Nuprl Lemma : find-first_wf
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)} ⟶ 𝔹]. (find-first(P;L) ∈ (∃x:T [first-member(T;x;L;P)]) ∨ (∀x∈L.¬↑(P x)))
Proof
Definitions occuring in Statement :
find-first: find-first(P;L)
,
first-member: first-member(T;x;L;P)
,
l_all: (∀x∈L.P[x])
,
l_member: (x ∈ l)
,
list: T List
,
assert: ↑b
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
sq_exists: ∃x:A [B[x]]
,
not: ¬A
,
or: P ∨ Q
,
member: t ∈ T
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
find-first: find-first(P;L)
,
prop: ℙ
,
can-find-first-ext,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
first-member: first-member(T;x;L;P)
,
subtype_rel: A ⊆r B
,
or: P ∨ Q
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
guard: {T}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
less_than: a < b
,
squash: ↓T
,
l_member: (x ∈ l)
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
cand: A c∧ B
,
nat: ℕ
,
ge: i ≥ j
,
so_apply: x[s]
,
sq_exists: ∃x:A [B[x]]
Lemmas referenced :
istype-universe,
l_member_wf,
bool_wf,
list_wf,
can-find-first-ext,
sq_exists_wf,
exists_wf,
int_seg_wf,
length_wf,
equal_wf,
select_wf,
int_seg_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
assert_wf,
int_seg_subtype_nat,
istype-false,
less_than_wf,
nat_properties,
not_wf,
select_member,
le_wf,
l_all_wf2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
sqequalHypSubstitution,
hypothesis,
functionIsType,
setIsType,
introduction,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
universeIsType,
universeEquality,
sqequalRule,
instantiate,
inhabitedIsType,
lambdaFormation_alt,
equalityIsType1,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
applyEquality,
lambdaEquality_alt,
isectIsType,
unionIsType,
natural_numberEquality,
productEquality,
because_Cache,
setElimination,
rename,
independent_isectElimination,
productElimination,
unionElimination,
approximateComputation,
dependent_pairFormation_alt,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
imageElimination,
productIsType,
dependent_set_memberEquality_alt,
functionEquality
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[P:\{x:T| (x \mmember{} L)\} {}\mrightarrow{} \mBbbB{}].
(find-first(P;L) \mmember{} (\mexists{}x:T [first-member(T;x;L;P)]) \mvee{} (\mforall{}x\mmember{}L.\mneg{}\muparrow{}(P x)))
Date html generated:
2019_10_15-AM-11_08_07
Last ObjectModification:
2018_10_09-PM-03_14_28
Theory : general
Home
Index