Nuprl Lemma : index-split-permutation

[T:Type]. ∀L:T List. ∀ids:ℕ List.  let L1,L2 index-split(L;ids) in permutation(T;L;L1 L2)


Proof




Definitions occuring in Statement :  index-split: index-split(L;idxs) permutation: permutation(T;L1;L2) append: as bs list: List nat: uall: [x:A]. B[x] all: x:A. B[x] spread: spread def universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T index-split: index-split(L;idxs) let: let implies:  Q prop: subtype_rel: A ⊆B uimplies: supposing a nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b
Lemmas referenced :  permute-to-front-permutation int_seg_wf length_wf equal_wf list_wf nat_wf length-filter int-list-member_wf subtype_rel_list upto_wf length_upto length_wf_nat non_neg_length filter_wf5 l_member_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf append_firstn_lastn_sq permute-to-front_wf top_wf permutation-length intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule natural_numberEquality addEquality cumulativity hypothesis equalityTransitivity equalitySymmetry independent_functionElimination universeEquality intEquality lambdaEquality applyEquality independent_isectElimination setElimination rename because_Cache dependent_set_memberEquality independent_pairFormation setEquality unionElimination productElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}ids:\mBbbN{}  List.    let  L1,L2  =  index-split(L;ids)  in  permutation(T;L;L1  @  L2)



Date html generated: 2018_05_21-PM-07_32_42
Last ObjectModification: 2017_07_26-PM-05_07_47

Theory : general


Home Index