Nuprl Lemma : index-split-permutation
∀[T:Type]. ∀L:T List. ∀ids:ℕ List.  let L1,L2 = index-split(L;ids) in permutation(T;L;L1 @ L2)
Proof
Definitions occuring in Statement : 
index-split: index-split(L;idxs)
, 
permutation: permutation(T;L1;L2)
, 
append: as @ bs
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
spread: spread def, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
index-split: index-split(L;idxs)
, 
let: let, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
Lemmas referenced : 
permute-to-front-permutation, 
int_seg_wf, 
length_wf, 
equal_wf, 
list_wf, 
nat_wf, 
length-filter, 
int-list-member_wf, 
subtype_rel_list, 
upto_wf, 
length_upto, 
length_wf_nat, 
non_neg_length, 
filter_wf5, 
l_member_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
append_firstn_lastn_sq, 
permute-to-front_wf, 
top_wf, 
permutation-length, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
natural_numberEquality, 
addEquality, 
cumulativity, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeEquality, 
intEquality, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
dependent_set_memberEquality, 
independent_pairFormation, 
setEquality, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}ids:\mBbbN{}  List.    let  L1,L2  =  index-split(L;ids)  in  permutation(T;L;L1  @  L2)
Date html generated:
2018_05_21-PM-07_32_42
Last ObjectModification:
2017_07_26-PM-05_07_47
Theory : general
Home
Index