Nuprl Lemma : permute-to-front-permutation

[T:Type]. ∀L:T List. ∀idxs:ℕ List.  permutation(T;L;permute-to-front(L;idxs))


Proof




Definitions occuring in Statement :  permute-to-front: permute-to-front(L;idxs) permutation: permutation(T;L1;L2) list: List nat: uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] permute-to-front: permute-to-front(L;idxs) permutation: permutation(T;L1;L2) exists: x:A. B[x] member: t ∈ T prop: int_seg: {i..j-} subtype_rel: A ⊆B uimplies: supposing a nat: guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top squash: T so_lambda: λ2x.t[x] so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q less_than: a < b cand: c∧ B sq_type: SQType(T) le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) l_disjoint: l_disjoint(T;l1;l2)
Lemmas referenced :  list_wf nat_wf select_wf int_seg_wf append_wf filter_wf5 upto_wf l_member_wf length_wf int-list-member_wf subtype_rel_list bnot_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length-append less_than_wf squash_wf true_wf length_upto length_wf_nat filter-split-length iff_weakening_equal decidable__lt intformless_wf int_formula_prop_less_lemma permute_list_wf equal_wf subtype_base_sq list_subtype_base set_subtype_base lelt_wf int_subtype_base no_repeats_inject int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma no_repeats_append_iff no_repeats_filter no_repeats_upto member_filter assert_wf not_wf assert-int-list-member iff_transitivity iff_weakening_uiff assert_of_bnot inject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis cumulativity hypothesisEquality universeEquality lambdaEquality natural_numberEquality because_Cache setElimination rename dependent_functionElimination applyEquality intEquality independent_isectElimination sqequalRule setEquality productElimination unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_functionElimination instantiate productEquality impliesFunctionality functionExtensionality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}idxs:\mBbbN{}  List.    permutation(T;L;permute-to-front(L;idxs))



Date html generated: 2018_05_21-PM-07_32_07
Last ObjectModification: 2017_07_26-PM-05_07_17

Theory : general


Home Index