Nuprl Lemma : int-list-member-append

[i:ℤ]. ∀[xs,ys:ℤ List].  (int-list-member(i;xs ys) int-list-member(i;xs) ∨bint-list-member(i;ys))


Proof




Definitions occuring in Statement :  int-list-member: int-list-member(i;xs) append: as bs list: List bor: p ∨bq uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] int-list-member: int-list-member(i;xs) bor: p ∨bq ifthenelse: if then else fi  bfalse: ff cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-base nat_wf list_subtype_base int_subtype_base less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma reduce_nil_lemma product_subtype_list spread_cons_lemma colength_wf_list intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal-wf-T-base decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base decidable__equal_int list_ind_cons_lemma reduce_cons_lemma bool_wf bool_subtype_base bor_assoc bor_wf eq_int_wf int-list-member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache baseApply closedConclusion baseClosed applyEquality unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality instantiate cumulativity imageElimination

Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[xs,ys:\mBbbZ{}  List].
    (int-list-member(i;xs  @  ys)  \msim{}  int-list-member(i;xs)  \mvee{}\msubb{}int-list-member(i;ys))



Date html generated: 2018_05_21-PM-07_31_56
Last ObjectModification: 2017_07_26-PM-05_07_08

Theory : general


Home Index