Nuprl Lemma : sq_stable__is_list_splitting

[T:Type]. ∀[L:T List]. ∀[LL:T List List]. ∀[L2:T List]. ∀[f:(T List) ⟶ 𝔹].  SqStable(is_list_splitting(T;L;LL;L2;f))


Proof




Definitions occuring in Statement :  is_list_splitting: is_list_splitting(T;L;LL;L2;f) list: List bool: 𝔹 sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  is_list_splitting: is_list_splitting(T;L;LL;L2;f) l_all: (∀x∈L.P[x]) uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T subtype_rel: A ⊆B so_apply: x[s] uiff: uiff(P;Q) sq_stable: SqStable(P)
Lemmas referenced :  sq_stable__and equal_wf list_wf append_wf concat_wf all_wf int_seg_wf length_wf assert_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma not_wf null_wf3 subtype_rel_list top_wf iseg_wf sq_stable__equal assert_of_null equal-wf-T-base sq_stable__all sq_stable__assert sq_stable__not assert_witness squash_wf length-append bool_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis isect_memberEquality productEquality natural_numberEquality lambdaEquality applyEquality functionExtensionality because_Cache setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination functionEquality independent_functionElimination lambdaFormation allFunctionality equalityTransitivity equalitySymmetry baseClosed impliesFunctionality promote_hyp independent_pairEquality axiomEquality applyLambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[LL:T  List  List].  \mforall{}[L2:T  List].  \mforall{}[f:(T  List)  {}\mrightarrow{}  \mBbbB{}].
    SqStable(is\_list\_splitting(T;L;LL;L2;f))



Date html generated: 2018_05_21-PM-08_04_41
Last ObjectModification: 2017_07_26-PM-05_40_47

Theory : general


Home Index