Nuprl Lemma : decidable__equal_free-dl

[T:Type]. ∀eq:EqDecider(T). ∀x,y:Point(free-dist-lattice(T; eq)).  Dec(x y ∈ Point(free-dist-lattice(T; eq)))


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) lattice-point: Point(l) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a implies:  Q guard: {T} top: Top
Lemmas referenced :  deq-implies lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf free-dl-point deq-fset_wf fset_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf strong-subtype-set2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination independent_functionElimination isect_memberEquality voidElimination voidEquality introduction setEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(free-dist-lattice(T;  eq)).    Dec(x  =  y)



Date html generated: 2020_05_20-AM-08_45_08
Last ObjectModification: 2015_12_28-PM-02_00_16

Theory : lattices


Home Index