Nuprl Lemma : decidable__equal_free-dl
∀[T:Type]. ∀eq:EqDecider(T). ∀x,y:Point(free-dist-lattice(T; eq)).  Dec(x = y ∈ Point(free-dist-lattice(T; eq)))
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
top: Top
Lemmas referenced : 
deq-implies, 
lattice-point_wf, 
free-dist-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
deq_wf, 
free-dl-point, 
deq-fset_wf, 
fset_wf, 
strong-subtype-deq-subtype, 
assert_wf, 
fset-antichain_wf, 
strong-subtype-set2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
introduction, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(free-dist-lattice(T;  eq)).    Dec(x  =  y)
Date html generated:
2020_05_20-AM-08_45_08
Last ObjectModification:
2015_12_28-PM-02_00_16
Theory : lattices
Home
Index