Nuprl Lemma : forget-lattice_wf

ForgetLattice ∈ Functor(BddDistributiveLattice;TypeCat)


Proof




Definitions occuring in Statement :  forget-lattice: ForgetLattice distributive-lattice-cat: BddDistributiveLattice type-cat: TypeCat cat-functor: Functor(C1;C2) member: t ∈ T
Definitions unfolded in proof :  forget-lattice: ForgetLattice member: t ∈ T distributive-lattice-cat: BddDistributiveLattice mk-cat: mk-cat all: x:A. B[x] top: Top type-cat: TypeCat uall: [x:A]. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) so_lambda: so_lambda3 so_apply: x[s1;s2;s3]
Lemmas referenced :  distributive-lattice-cat_wf type-cat_wf cat_ob_pair_lemma lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf cat-ob_wf cat_arrow_triple_lemma cat-arrow_wf cat_comp_tuple_lemma compose_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf cat_id_tuple_lemma mk-functor_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality sqequalRule isectElimination hypothesisEquality applyEquality instantiate lambdaEquality productEquality because_Cache cumulativity universeEquality independent_isectElimination setElimination rename lambdaFormation

Latex:
ForgetLattice  \mmember{}  Functor(BddDistributiveLattice;TypeCat)



Date html generated: 2020_05_20-AM-09_00_30
Last ObjectModification: 2020_01_16-PM-05_05_39

Theory : lattices


Home Index