Nuprl Lemma : lattice-extend-1

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)].
  (lattice-extend(L;eq;eqL;f;1) 1 ∈ Point(L))


Proof




Definitions occuring in Statement :  lattice-extend: lattice-extend(L;eq;eqL;f;ac) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice lattice-1: 1 lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a lattice-1: 1 free-dist-lattice: free-dist-lattice(T; eq) lattice-extend: lattice-extend(L;eq;eqL;f;ac) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  btrue: tt empty-fset: {} fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] lattice-fset-meet: /\(s) fset-singleton: {x} lattice-fset-join: \/(s) squash: T cand: c∧ B bdd-lattice: BoundedLattice true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf rec_select_update_lemma fset-image-singleton list_accum_nil_lemma reduce_nil_lemma reduce_cons_lemma squash_wf true_wf lattice-join-1 lattice-0_wf lattice-1_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis functionEquality cumulativity hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality sqequalRule instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination isect_memberEquality axiomEquality dependent_functionElimination voidElimination voidEquality setElimination rename productElimination imageElimination equalityTransitivity equalitySymmetry independent_pairFormation dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    (lattice-extend(L;eq;eqL;f;1)  =  1)



Date html generated: 2020_05_20-AM-08_45_35
Last ObjectModification: 2017_07_28-AM-09_14_30

Theory : lattices


Home Index