Nuprl Lemma : member-free-dl-meet

[X:Type]
  ∀as,bs:X List List. ∀x:X List.
    ((x ∈ free-dl-meet(as;bs)) ⇐⇒ ∃u,v:X List. ((u ∈ as) ∧ (v ∈ bs) ∧ (x (u v) ∈ (X List))))


Proof




Definitions occuring in Statement :  free-dl-meet: free-dl-meet(as;bs) l_member: (x ∈ l) append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] free-dl-meet: free-dl-meet(as;bs) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q member: t ∈ T uimplies: supposing a not: ¬A false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] exists: x:A. B[x] top: Top cand: c∧ B
Lemmas referenced :  null_nil_lemma btrue_wf member-implies-null-eq-bfalse list_wf nil_wf btrue_neq_bfalse or_wf l_member_wf exists_wf equal_wf append_wf list_accum_wf map_wf all_wf iff_wf list_induction list_accum_nil_lemma list_accum_cons_lemma cons_wf member_wf member_append member_map cons_member and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut lambdaFormation independent_pairFormation sqequalHypSubstitution unionElimination thin introduction extract_by_obid hypothesis isectElimination cumulativity hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination lambdaEquality productEquality inrFormation addLevel allFunctionality productElimination impliesFunctionality dependent_functionElimination because_Cache universeEquality isect_memberEquality voidEquality rename inlFormation applyEquality dependent_pairFormation orFunctionality levelHypothesis promote_hyp existsFunctionality andLevelFunctionality existsLevelFunctionality dependent_set_memberEquality applyLambdaEquality setElimination

Latex:
\mforall{}[X:Type]
    \mforall{}as,bs:X  List  List.  \mforall{}x:X  List.
        ((x  \mmember{}  free-dl-meet(as;bs))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}u,v:X  List.  ((u  \mmember{}  as)  \mwedge{}  (v  \mmember{}  bs)  \mwedge{}  (x  =  (u  @  v))))



Date html generated: 2020_05_20-AM-08_26_59
Last ObjectModification: 2017_07_28-AM-09_13_21

Theory : lattices


Home Index