Nuprl Lemma : binary-fps_wf
*50/50* ∈ FinProbSpace
Proof
Definitions occuring in Statement :
binary-fps: *50/50*
,
finite-prob-space: FinProbSpace
,
member: t ∈ T
Definitions unfolded in proof :
binary-fps: *50/50*
,
finite-prob-space: FinProbSpace
,
and: P ∧ Q
,
cand: A c∧ B
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
int_nzero: ℤ-o
,
true: True
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
implies: P
⇒ Q
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
guard: {T}
,
false: False
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
top: Top
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
so_apply: x[s]
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
qeq: qeq(r;s)
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
qsum: Σa ≤ j < b. E[j]
,
rng_sum: rng_sum,
mon_itop: Π lb ≤ i < ub. E[i]
,
itop: Π(op,id) lb ≤ i < ub. E[i]
,
ycomb: Y
,
ifthenelse: if b then t else f fi
,
lt_int: i <z j
,
length: ||as||
,
list_ind: list_ind,
cons: [a / b]
,
nil: []
,
it: ⋅
,
btrue: tt
,
infix_ap: x f y
,
grp_op: *
,
pi1: fst(t)
,
pi2: snd(t)
,
add_grp_of_rng: r↓+gp
,
rng_plus: +r
,
qrng: <ℚ+*>
,
qadd: r + s
,
subtract: n - m
,
bfalse: ff
,
grp_id: e
,
rng_zero: 0
,
select: L[n]
,
qdiv: (r/s)
,
qmul: r * s
,
qinv: 1/r
,
eq_int: (i =z j)
,
assert: ↑b
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
qle: r ≤ s
,
grp_leq: a ≤ b
,
grp_le: ≤b
,
qadd_grp: <ℚ+>
,
q_le: q_le(r;s)
,
bor: p ∨bq
,
qpositive: qpositive(r)
,
qsub: r - s
,
band: p ∧b q
,
less_than: a < b
,
squash: ↓T
Lemmas referenced :
l_member_wf,
l_all_wf2,
equal-wf-T-base,
l_all_single,
qle_wf,
l_all_cons,
int_seg_wf,
int_term_value_add_lemma,
int_formula_prop_less_lemma,
itermAdd_wf,
intformless_wf,
decidable__lt,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
int_seg_properties,
length_of_nil_lemma,
length_of_cons_lemma,
nil_wf,
rationals_wf,
select_wf,
nequal_wf,
true_wf,
equal_wf,
int_subtype_base,
subtype_base_sq,
int_nzero-rational,
qdiv_wf,
cons_wf,
length_wf,
qsum_wf,
assert-qeq
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
because_Cache,
independent_isectElimination,
dependent_set_memberEquality,
addLevel,
lambdaFormation,
instantiate,
cumulativity,
intEquality,
hypothesis,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
voidElimination,
hypothesisEquality,
introduction,
sqequalRule,
lambdaEquality,
applyEquality,
setElimination,
rename,
isect_memberEquality,
voidEquality,
addEquality,
productElimination,
unionElimination,
dependent_pairFormation,
int_eqEquality,
independent_pairFormation,
computeAll,
setEquality,
baseClosed,
productEquality,
imageElimination
Latex:
*50/50* \mmember{} FinProbSpace
Date html generated:
2016_05_15-PM-11_44_48
Last ObjectModification:
2016_01_17-AM-10_07_47
Theory : randomness
Home
Index