Nuprl Lemma : implies-qle2
∀[a,b:ℚ].  a ≤ b supposing ∀e:ℚ. (0 < e 
⇒ (a ≤ (b + e)))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
qadd: r + s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
qadd_wf, 
qle_wf, 
qless_wf, 
all_wf, 
qle_witness, 
nat_plus_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
qless-int, 
qinv-positive, 
not_wf, 
equal-wf-T-base, 
int-equal-in-rationals, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
int-subtype-rationals, 
less_than_wf, 
rationals_wf, 
subtype_rel_set, 
qdiv_wf, 
implies-qle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
intEquality, 
lambdaEquality, 
setElimination, 
rename, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addLevel, 
impliesFunctionality, 
productElimination, 
baseClosed, 
independent_functionElimination, 
unionElimination, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b:\mBbbQ{}].    a  \mleq{}  b  supposing  \mforall{}e:\mBbbQ{}.  (0  <  e  {}\mRightarrow{}  (a  \mleq{}  (b  +  e)))
Date html generated:
2016_05_15-PM-11_32_46
Last ObjectModification:
2016_01_16-PM-09_13_55
Theory : rationals
Home
Index