Nuprl Lemma : implies-qle2

[a,b:ℚ].  a ≤ supposing ∀e:ℚ(0 <  (a ≤ (b e)))


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  qadd_wf qle_wf qless_wf all_wf qle_witness nat_plus_wf int_formula_prop_not_lemma intformnot_wf decidable__lt qless-int qinv-positive not_wf equal-wf-T-base int-equal-in-rationals equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties int-subtype-rationals less_than_wf rationals_wf subtype_rel_set qdiv_wf implies-qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation hypothesis dependent_functionElimination natural_numberEquality applyEquality because_Cache sqequalRule intEquality lambdaEquality setElimination rename dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addLevel impliesFunctionality productElimination baseClosed independent_functionElimination unionElimination functionEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b:\mBbbQ{}].    a  \mleq{}  b  supposing  \mforall{}e:\mBbbQ{}.  (0  <  e  {}\mRightarrow{}  (a  \mleq{}  (b  +  e)))



Date html generated: 2016_05_15-PM-11_32_46
Last ObjectModification: 2016_01_16-PM-09_13_55

Theory : rationals


Home Index