Nuprl Lemma : implies-qle

[a,b:ℚ].  a ≤ supposing ∀n:ℕ+(a ≤ (b (1/n)))


Proof




Definitions occuring in Statement :  qle: r ≤ s qdiv: (r/s) qadd: s rationals: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q not: ¬A implies:  Q prop: all: x:A. B[x] subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top iff: ⇐⇒ Q true: True guard: {T} qsub: s squash: T rev_uimplies: rev_uimplies(P;Q) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  qless_complement_qorder qless_wf qle_witness nat_plus_wf qle_wf qadd_wf qdiv_wf subtype_rel_set rationals_wf less_than_wf istype-int int-subtype-rationals nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf set_subtype_base int_subtype_base iff_weakening_uiff equal-wf-base int-equal-in-rationals qsub_wf qmul_wf uiff_transitivity2 qadd_preserves_qless squash_wf true_wf qmul_over_plus_qrng qmul_zero_qrng qinv_inv_q mon_assoc_q qadd_comm_q qadd_ac_1_q qinverse_q mon_ident_q qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity q-archimedean qless-int nat_properties decidable__lt intformnot_wf itermAdd_wf intformle_wf int_formula_prop_not_lemma int_term_value_add_lemma int_formula_prop_le_lemma le_wf qadd-add istype-less_than qmul_preserves_qle qmul-qdiv-cancel subtype_rel_self iff_weakening_equal qmul_one_qrng qmul_comm_qrng qmul_over_minus_qrng qadd_preserves_qle qadd_inv_assoc_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_isectElimination lambdaFormation_alt universeIsType hypothesis independent_functionElimination sqequalRule functionIsType natural_numberEquality applyEquality because_Cache intEquality lambdaEquality_alt setElimination rename approximateComputation dependent_pairFormation_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation equalityIstype baseClosed sqequalBase equalitySymmetry inhabitedIsType isectIsTypeImplies minusEquality imageElimination equalityTransitivity imageMemberEquality addEquality unionElimination baseApply closedConclusion dependent_set_memberEquality_alt instantiate universeEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].    a  \mleq{}  b  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (a  \mleq{}  (b  +  (1/n)))



Date html generated: 2019_10_16-PM-00_37_03
Last ObjectModification: 2019_06_26-PM-05_06_49

Theory : rationals


Home Index