Nuprl Lemma : implies-qle
∀[a,b:ℚ].  a ≤ b supposing ∀n:ℕ+. (a ≤ (b + (1/n)))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qdiv: (r/s)
, 
qadd: r + s
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
guard: {T}
, 
qsub: r - s
, 
squash: ↓T
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
qless_complement_qorder, 
qless_wf, 
qle_witness, 
nat_plus_wf, 
qle_wf, 
qadd_wf, 
qdiv_wf, 
subtype_rel_set, 
rationals_wf, 
less_than_wf, 
istype-int, 
int-subtype-rationals, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
set_subtype_base, 
int_subtype_base, 
iff_weakening_uiff, 
equal-wf-base, 
int-equal-in-rationals, 
qsub_wf, 
qmul_wf, 
uiff_transitivity2, 
qadd_preserves_qless, 
squash_wf, 
true_wf, 
qmul_over_plus_qrng, 
qmul_zero_qrng, 
qinv_inv_q, 
mon_assoc_q, 
qadd_comm_q, 
qadd_ac_1_q, 
qinverse_q, 
mon_ident_q, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
q-archimedean, 
qless-int, 
nat_properties, 
decidable__lt, 
intformnot_wf, 
itermAdd_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
le_wf, 
qadd-add, 
istype-less_than, 
qmul_preserves_qle, 
qmul-qdiv-cancel, 
subtype_rel_self, 
iff_weakening_equal, 
qmul_one_qrng, 
qmul_comm_qrng, 
qmul_over_minus_qrng, 
qadd_preserves_qle, 
qadd_inv_assoc_q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
lambdaFormation_alt, 
universeIsType, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
functionIsType, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
intEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityIstype, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
inhabitedIsType, 
isectIsTypeImplies, 
minusEquality, 
imageElimination, 
equalityTransitivity, 
imageMemberEquality, 
addEquality, 
unionElimination, 
baseApply, 
closedConclusion, 
dependent_set_memberEquality_alt, 
instantiate, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[a,b:\mBbbQ{}].    a  \mleq{}  b  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (a  \mleq{}  (b  +  (1/n)))
Date html generated:
2019_10_16-PM-00_37_03
Last ObjectModification:
2019_06_26-PM-05_06_49
Theory : rationals
Home
Index