Nuprl Lemma : qdiv-non-neg
∀a,b:ℚ.  (0 < b ∧ (0 ≤ a)) ∨ (b < 0 ∧ (a ≤ 0)) 
⇐⇒ 0 ≤ (a/b) supposing ¬(b = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
decidable: Dec(P)
, 
cand: A c∧ B
Lemmas referenced : 
equal-wf-T-base, 
rationals_wf, 
or_wf, 
qless_wf, 
int-subtype-rationals, 
qle_wf, 
qdiv_wf, 
not_wf, 
qmul_preserves_qle, 
qmul_wf, 
squash_wf, 
true_wf, 
qmul_zero_qrng, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
qmul_over_minus_qrng, 
qadd_preserves_qless, 
qadd_wf, 
qadd_comm_q, 
qinverse_q, 
mon_ident_q, 
qadd_preserves_qle, 
decidable__qless, 
qmul_preserves_qle2, 
qle_weakening_lt_qorder, 
qle_witness, 
qless_trichot_qorder, 
qless-int, 
qmul_reverses_qle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesis, 
baseClosed, 
rename, 
independent_pairFormation, 
unionElimination, 
productEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
universeEquality, 
independent_functionElimination, 
minusEquality, 
inrFormation, 
inlFormation
Latex:
\mforall{}a,b:\mBbbQ{}.    (0  <  b  \mwedge{}  (0  \mleq{}  a))  \mvee{}  (b  <  0  \mwedge{}  (a  \mleq{}  0))  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  (a/b)  supposing  \mneg{}(b  =  0)
Date html generated:
2018_05_21-PM-11_58_47
Last ObjectModification:
2017_07_26-PM-06_48_20
Theory : rationals
Home
Index