Nuprl Lemma : qdiv-non-neg

a,b:ℚ.  (0 < b ∧ (0 ≤ a)) ∨ (b < 0 ∧ (a ≤ 0)) ⇐⇒ 0 ≤ (a/b) supposing ¬(b 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qdiv: (r/s) rationals: uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q subtype_rel: A ⊆B rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) true: True squash: T guard: {T} decidable: Dec(P) cand: c∧ B
Lemmas referenced :  equal-wf-T-base rationals_wf or_wf qless_wf int-subtype-rationals qle_wf qdiv_wf not_wf qmul_preserves_qle qmul_wf squash_wf true_wf qmul_zero_qrng qmul-qdiv-cancel iff_weakening_equal qmul_over_minus_qrng qadd_preserves_qless qadd_wf qadd_comm_q qinverse_q mon_ident_q qadd_preserves_qle decidable__qless qmul_preserves_qle2 qle_weakening_lt_qorder qle_witness qless_trichot_qorder qless-int qmul_reverses_qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination hypothesis baseClosed rename independent_pairFormation unionElimination productEquality natural_numberEquality applyEquality because_Cache independent_isectElimination productElimination imageElimination equalityTransitivity equalitySymmetry imageMemberEquality universeEquality independent_functionElimination minusEquality inrFormation inlFormation

Latex:
\mforall{}a,b:\mBbbQ{}.    (0  <  b  \mwedge{}  (0  \mleq{}  a))  \mvee{}  (b  <  0  \mwedge{}  (a  \mleq{}  0))  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  (a/b)  supposing  \mneg{}(b  =  0)



Date html generated: 2018_05_21-PM-11_58_47
Last ObjectModification: 2017_07_26-PM-06_48_20

Theory : rationals


Home Index