Nuprl Lemma : qexp-le-one

[a:ℚ]. ∀[n:ℕ]. (a ↑ n ≤ 1) supposing (0 ≤ a) ∧ (a ≤ 1)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qle: r ≤ s rationals: nat: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q nat_plus: +
Lemmas referenced :  qmul_comm_qrng qmul_one_qrng qle_transitivity_qorder qmul_wf qmul_preserves_qle2 qle_reflexivity int-subtype-rationals and_wf nat_wf exp_unroll_q int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf iff_weakening_equal qexp-zero rationals_wf true_wf squash_wf qle_wf qexp_wf qle_witness less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination applyEquality because_Cache imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality dependent_set_memberEquality unionElimination

Latex:
\mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].  (a  \muparrow{}  n  \mleq{}  1)  supposing  (0  \mleq{}  a)  \mwedge{}  (a  \mleq{}  1)



Date html generated: 2016_05_15-PM-11_10_28
Last ObjectModification: 2016_01_16-PM-09_24_51

Theory : rationals


Home Index