Nuprl Lemma : qlog_wf
∀e:{e:ℚ| 0 < e} . ∀q:{q:ℚ| (0 ≤ q) ∧ q < 1} .  (qlog(q;e) ∈ qlog-type(q;e))
Proof
Definitions occuring in Statement : 
qlog-type: qlog-type(q;e)
, 
qlog: qlog(q;e)
, 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
qlog-type: qlog-type(q;e)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
qlog: qlog(q;e)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
cand: A c∧ B
, 
so_apply: x[s]
Lemmas referenced : 
qlog-ext, 
subtype_rel_self, 
rationals_wf, 
qless_wf, 
all_wf, 
qle_wf, 
set_wf, 
nat_plus_wf, 
qexp_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
nat_plus_subtype_nat, 
int-subtype-rationals
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
setElimination, 
thin, 
rename, 
applyEquality, 
instantiate, 
extract_by_obid, 
hypothesis, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
setEquality, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
productEquality, 
lambdaEquality, 
productElimination, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation
Latex:
\mforall{}e:\{e:\mBbbQ{}|  0  <  e\}  .  \mforall{}q:\{q:\mBbbQ{}|  (0  \mleq{}  q)  \mwedge{}  q  <  1\}  .    (qlog(q;e)  \mmember{}  qlog-type(q;e))
Date html generated:
2018_05_22-AM-00_14_24
Last ObjectModification:
2018_05_19-PM-04_05_44
Theory : rationals
Home
Index