Nuprl Lemma : simple-cbva-seq-combine
∀[F,L1,L2:Top]. ∀[m1,m2:ℕ+].
  (simple-cbva-seq(L1;λout.simple-cbva-seq(L2[out];F;m2);m1) ~ simple-cbva-seq(λn.if n <z m1
                                                                                  then L1 n
                                                                                  else mk_lambdas(λout.(L2[out] 
                                                                                                        (n - m1));m1 
                                                                                       - 1)
                                                                                  fi F;m1 + m2))
Proof
Definitions occuring in Statement : 
simple-cbva-seq: simple-cbva-seq(L;F;m)
, 
mk_lambdas: mk_lambdas(F;m)
, 
nat_plus: ℕ+
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
simple-cbva-seq: simple-cbva-seq(L;F;m)
, 
cbva-seq: cbva-seq(L;F;m)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
le_wf, 
nat_plus_subtype_nat, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
callbyvalueall_seq-seq, 
callbyvalueall_seq-combine0, 
mk_lambdas_compose, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
int_subtype_base, 
decidable__equal_int, 
nat_plus_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
addEquality, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
applyEquality, 
isect_memberFormation, 
sqequalAxiom
Latex:
\mforall{}[F,L1,L2:Top].  \mforall{}[m1,m2:\mBbbN{}\msupplus{}].
    (simple-cbva-seq(L1;\mlambda{}out.simple-cbva-seq(L2[out];F;m2);m1) 
    \msim{}  simple-cbva-seq(\mlambda{}n.if  n  <z  m1  then  L1  n  else  mk\_lambdas(\mlambda{}out.(L2[out]  (n  -  m1));m1  -  1)  fi  ;F;m1
    +  m2))
Date html generated:
2018_05_21-PM-06_23_49
Last ObjectModification:
2018_05_19-PM-05_32_05
Theory : untyped!computation
Home
Index