Nuprl Lemma : groupoid-nerve-filler-fills

G:Groupoid. ∀I:Cname List. ∀J:nameset(I) List. ∀x:nameset(I). ∀i:ℕ2. ∀bx:open_box(cubical-nerve(cat(G));I;J;x;i).
  fills-open_box(cubical-nerve(cat(G));I;bx;(λI,J,x,i,box. groupoid-nerve-filler(G;I;J;x;i;box)) bx)


Proof




Definitions occuring in Statement :  groupoid-nerve-filler: groupoid-nerve-filler(G;I;J;x;i;box) cubical-nerve: cubical-nerve(X) fills-open_box: fills-open_box(X;I;bx;cube) open_box: open_box(X;I;J;x;i) nameset: nameset(L) coordinate_name: Cname groupoid-cat: cat(G) groupoid: Groupoid list: List int_seg: {i..j-} all: x:A. B[x] apply: a lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) groupoid-nerve-filler: groupoid-nerve-filler(G;I;J;x;i;box) top: Top implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q cons: [a b] prop: ge: i ≥  int_seg: {i..j-} lelt: i ≤ j < k sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) true: True I-face: I-face(X;I) face-name: face-name(f) pi1: fst(t) pi2: snd(t) so_lambda: λ2x.t[x] so_apply: x[s] fills-open_box: fills-open_box(X;I;bx;cube) fills-faces: fills-faces(X;I;bx;L) l_all: (∀x∈L.P[x]) select: L[n] groupoid-nerve-filler0: groupoid-nerve-filler0(I;x;box) cubical-nerve: cubical-nerve(X) is-face: is-face(X;I;bx;f) face-cube: cube(f) face-direction: direction(f) face-dimension: dimension(f) cube-set-restriction: f(s) le: A ≤ B open_box: open_box(X;I;J;x;i) l_exists: (∃x∈L. P[x]) nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] I-cube: X(I) cand: c∧ B less_than: a < b name-morph: name-morph(I;J) face-map: (x:=i) name-comp: (f g) compose: g uext: uext(g) isname: isname(z) le_int: i ≤j lt_int: i <j less_than': less_than'(a;b) functor-ob: ob(F) cat-functor: Functor(C1;C2) groupoid-nerve-filler2: groupoid-nerve-filler2(C;I;J;box) poset-functor: poset-functor(J;K;f) functor-comp: functor-comp(F;G) mk-functor: mk-functor cat-ob: cat-ob(C) poset-cat: poset-cat(J) nat: subtract: m listp: List+ groupoid-nerve-filler1: groupoid-nerve-filler1(G;I;J;x;i;box)
Lemmas referenced :  open_box_wf cubical-nerve_wf groupoid-cat_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf groupoid_wf null_wf3 top_wf istype-void eqtt_to_assert assert_of_null eqff_to_assert bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base list-cases product_subtype_list open_box-nil subtype_rel_weakening nil_wf I-face_wf equal-wf-base equal_wf face-name_wf hd_wf int_seg_properties sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf length_of_nil_lemma int_subtype_base length_of_cons_lemma reduce_hd_cons_lemma pi1_wf_top nameset_subtype_base set_subtype_base lelt_wf cubical-nerve-I-cube decidable__equal_int int_seg_subtype_special int_seg_cases intformless_wf int_formula_prop_less_lemma length_wf cat-functor_wf poset-cat_wf list-diff_wf cname_deq_wf cons_wf iota-wf poset-functor_wf face-map_wf2 squash_wf true_wf istype-universe functor-comp-assoc functor-comp_wf small-category_wf poset-functor-comp subtype_rel_self iff_weakening_equal iota-identity poset-id-functor functor-comp-id cons_member l_member_wf member-list-diff non_neg_length itermAdd_wf int_term_value_add_lemma null_nil_lemma btrue_wf null_cons_lemma bfalse_wf btrue_neq_bfalse lt_int_wf assert_of_lt_int less_than_wf istype-less_than length-open_box-ge-3 stuck-spread istype-base ob_pair_lemma poset-functor-extends-box-faces select_wf decidable__lt not_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma istype-le decidable__equal_int_seg name-comp_wf name-morph_wf nerve_box_label_wf member_singleton le_wf extd-nameset-nil eq_int_wf assert_of_eq_int neg_assert_of_eq_int isname-name name-morph-flip_wf nerve_box_edge_wf subtype_rel-equal cat-arrow_wf or_wf name-morph-flip-face-map1 eq_int_eq_true istype-false poset-extend-unique groupoid-nerve-filler2_wf poset_functor_extend-extends poset-functor-extends_wf cat-ob_wf cat-id_wf cat-comp_wf arrow_pair_lemma cat_ob_pair_lemma cat_arrow_triple_lemma poset_functor_extend-face-map assert_of_le_int extd-nameset_subtype_int length-open_box-le-3 istype-assert poset-functor-extends-box-faces-1 nerve_box_edge1_wf listp_properties length_wf_nat not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel list-subtype groupoid-nerve-filler1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality independent_isectElimination lambdaEquality_alt setElimination rename inhabitedIsType sqequalRule natural_numberEquality isect_memberEquality_alt voidElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation_alt equalityIsType3 promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache baseClosed equalityIsType1 hypothesis_subsumption setEquality productEquality closedConclusion imageMemberEquality imageElimination approximateComputation int_eqEquality independent_pairFormation independent_pairEquality intEquality applyLambdaEquality universeEquality hyp_replacement inlFormation_alt productIsType functionIsType dependent_set_memberEquality_alt equalityIsType4 inrFormation_alt equalityIsType2 setIsType dependent_pairEquality_alt functionEquality addEquality minusEquality

Latex:
\mforall{}G:Groupoid.  \mforall{}I:Cname  List.  \mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.
\mforall{}bx:open\_box(cubical-nerve(cat(G));I;J;x;i).
    fills-open\_box(cubical-nerve(cat(G));I;bx;(\mlambda{}I,J,x,i,box.  groupoid-nerve-filler(G;I;J;x;i;box))  I  J\000C  x  i  bx)



Date html generated: 2019_11_05-PM-00_39_15
Last ObjectModification: 2018_11_08-PM-11_57_37

Theory : cubical!sets


Home Index