Nuprl Lemma : implies-rv-pos-angle

n:ℕ. ∀a,b,c,a':ℝ^n.  (a-b-a'  ab=a'b  ab=cb  c ≠  c ≠ a'  rv-pos-angle(n;a;b;c))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-pos-angle: rv-pos-angle(n;a;b;c) member: t ∈ T uall: [x:A]. B[x] rv-congruent: ab=cd real-vec-norm: ||x|| rsqrt: rsqrt(x) rroot: rroot(i;x) ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n btrue: tt rroot-abs: rroot-abs(i;x) fastexp: i^n efficient-exp-ext subtract: m real-vec-dist: d(x;y) prop: subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q real-vec-sep: a ≠ b rv-between: a-b-c real-vec-between: a-b-c exists: x:A. B[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req-vec: req-vec(n;x;y) real-vec-sub: Y real-vec-mul: a*X real-vec-add: Y nat: real-vec: ^n req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top le: A ≤ B less_than': less_than'(a;b) rneq: x ≠ y or: P ∨ Q guard: {T} less_than: a < b squash: T true: True rdiv: (x/y) int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T)
Lemmas referenced :  rv-pos-angle-lemma real-vec-sub_wf real-vec-sep_wf rv-congruent_wf rv-between_wf real-vec_wf istype-nat int-to-real_wf real-vec-dist_wf rless_functionality req_weakening real-vec-dist-translation real-vec-sep-symmetry real-vec-add_wf real-vec-mul_wf rsub_wf req_functionality real-vec-dist_functionality req-vec_weakening req-vec_functionality real-vec-mul_functionality real-vec-sub_functionality real-vec-dist-equal-iff int_seg_wf radd_wf rmul_wf itermSubtract_wf itermVar_wf itermAdd_wf itermMultiply_wf itermConstant_wf req-iff-rsub-is-0 dot-product_wf real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_const_lemma dot-product_functionality rminus_wf itermMinus_wf real_term_value_minus_lemma rnexp_wf istype-false istype-le real-vec-norm_wf rnexp-positive req_inversion real-vec-norm-squared rless_wf req_wf iff_weakening_uiff rmul-assoc req_transitivity dot-product-linearity2 rmul_functionality rmul_preserves_req radd-preserves-req rdiv_wf rless-int rinv_wf2 rmul-rinv minus-one-mul-top subtype_base_sq int_subtype_base nequal_wf rsub_functionality radd_functionality int-rinv-cancel2 real-vec-add_functionality squash_wf true_wf real_wf subtype_rel_self iff_weakening_equal rmul-rinv3 efficient-exp-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis independent_functionElimination sqequalRule universeIsType inhabitedIsType natural_numberEquality applyEquality lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry because_Cache independent_isectElimination productElimination minusEquality approximateComputation int_eqEquality isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt independent_pairFormation equalityIsType1 inrFormation_alt closedConclusion imageMemberEquality baseClosed instantiate cumulativity intEquality equalityIsType4 imageElimination universeEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,a':\mBbbR{}\^{}n.    (a-b-a'  {}\mRightarrow{}  ab=a'b  {}\mRightarrow{}  ab=cb  {}\mRightarrow{}  c  \mneq{}  a  {}\mRightarrow{}  c  \mneq{}  a'  {}\mRightarrow{}  rv-pos-angle(n;a;b;c))



Date html generated: 2019_10_30-AM-08_48_29
Last ObjectModification: 2018_11_08-PM-02_13_53

Theory : reals


Home Index