Nuprl Lemma : permutation-invariant2
∀[T:Type]. ∀[R:(T List) ⟶ (T List) ⟶ ℙ].
  (Trans(T List;as,bs.R[as;bs])
  ⇒ Refl(T List;as,bs.R[as;bs])
  ⇒ (∀as:T List. ∀a:T.  R[[a / as];as @ [a]])
  ⇒ (∀as:T List. ∀a1,a2:T.  R[[a1; [a2 / as]];[a2; [a1 / as]]])
  ⇒ (∀as,bs:T List.  (permutation(T;as;bs) ⇒ R[as;bs])))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2), 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
trans: Trans(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
guard: {T}, 
so_lambda: λ2x y.t[x; y], 
prop: ℙ, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
permutation: permutation(T;L1;L2), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
refl: Refl(T;x,y.E[x; y]), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
squash: ↓T, 
less_than: a < b, 
or: P ∨ Q, 
decidable: Dec(P), 
trans: Trans(T;x,y.E[x; y]), 
cons: [a / b], 
it: ⋅, 
nil: [], 
list_ind: list_ind, 
length: ||as||, 
less_than': less_than'(a;b), 
ge: i ≥ j , 
le: A ≤ B, 
top: Top, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
true: True, 
subtract: n - m, 
select: L[n], 
sq_type: SQType(T), 
flip: (i, j), 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
mklist: mklist(n;f), 
permute_list: (L o f), 
rotate: rot(n)
Lemmas referenced : 
istype-universe, 
trans_wf, 
refl_wf, 
nil_wf, 
append_wf, 
subtype_rel_self, 
cons_wf, 
list_wf, 
permutation_wf, 
istype-less_than, 
member-less_than, 
length_wf, 
int_seg_wf, 
inject_wf, 
permute_list_wf, 
permutation-generators2, 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
istype-nat, 
length_wf_nat, 
permute_list-identity, 
permute_list-compose, 
decidable__lt, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
flip_wf, 
compose_wf, 
permute_list_length, 
product_subtype_list, 
list-cases, 
nat_wf, 
less_than_wf, 
lelt_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
satisfiable-full-omega-tt, 
non_neg_length, 
false_wf, 
length_of_cons_lemma, 
list_extensionality, 
iff_weakening_equal, 
select_wf, 
nat_properties, 
permute_list_select, 
true_wf, 
squash_wf, 
equal_wf, 
not_wf, 
bnot_wf, 
subtype_base_sq, 
assert_wf, 
equal-wf-T-base, 
bool_wf, 
eq_int_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
select_cons_tl, 
rotate_wf, 
primrec0_lemma, 
istype-base, 
stuck-spread, 
length_of_nil_lemma, 
length_cons, 
length-append, 
select_append_front, 
select_cons_tl_sq2, 
istype-void, 
istype-assert, 
equal-wf-base, 
select-cons-hd, 
length-singleton, 
add-is-int-iff, 
select_append_back
Rules used in proof : 
universeEquality, 
instantiate, 
functionIsType, 
applyLambdaEquality, 
hyp_replacement, 
independent_functionElimination, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
setIsType, 
rename, 
setElimination, 
dependent_functionElimination, 
equalitySymmetry, 
sqequalBase, 
independent_isectElimination, 
natural_numberEquality, 
lambdaEquality_alt, 
intEquality, 
sqequalRule, 
applyEquality, 
equalityIstype, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
hypothesis, 
dependent_set_memberEquality_alt, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productIsType, 
voidElimination, 
independent_pairFormation, 
Error :memTop, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
imageElimination, 
unionElimination, 
equalityTransitivity, 
hypothesis_subsumption, 
promote_hyp, 
computeAll, 
lambdaEquality, 
dependent_pairFormation, 
addEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
voidEquality, 
isect_memberEquality, 
cumulativity, 
baseClosed, 
imageMemberEquality, 
equalityElimination, 
impliesFunctionality, 
closedConclusion, 
baseApply, 
pointwiseFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[R:(T  List)  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T  List;as,bs.R[as;bs])
    {}\mRightarrow{}  Refl(T  List;as,bs.R[as;bs])
    {}\mRightarrow{}  (\mforall{}as:T  List.  \mforall{}a:T.    R[[a  /  as];as  @  [a]])
    {}\mRightarrow{}  (\mforall{}as:T  List.  \mforall{}a1,a2:T.    R[[a1;  [a2  /  as]];[a2;  [a1  /  as]]])
    {}\mRightarrow{}  (\mforall{}as,bs:T  List.    (permutation(T;as;bs)  {}\mRightarrow{}  R[as;bs])))
Date html generated:
2020_05_19-PM-09_44_58
Last ObjectModification:
2019_12_26-AM-11_46_41
Theory : list_1
Home
Index