Nuprl Lemma : grp_leq_shift_right

[g:OGrp]. ∀[a,b:|g|].  uiff(a ≤ b;e ≤ (b (~ a)))


Proof




Definitions occuring in Statement :  ocgrp: OGrp grp_leq: a ≤ b grp_inv: ~ grp_id: e grp_op: * grp_car: |g| uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a grp_leq: a ≤ b ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon implies:  Q prop: infix_ap: y squash: T subtype_rel: A ⊆B guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  grp_leq_op_l iff_weakening_uiff uiff_wf iabmonoid_wf abmonoid_wf abdmonoid_wf ocmon_wf ocgrp_subtype_ocmon ocmon_subtype_abdmonoid abdmonoid_abmonoid abmonoid_subtype_iabmonoid abmonoid_comm iff_weakening_equal igrp_wf grp_wf abgrp_wf subtype_rel_transitivity ocgrp_subtype_abgrp abgrp_subtype_grp grp_subtype_igrp grp_inverse grp_sig_wf true_wf squash_wf ocgrp_wf grp_leq_wf grp_inv_wf grp_op_wf grp_id_wf grp_le_wf bool_wf grp_car_wf infix_ap_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality lemma_by_obid setElimination rename hypothesis because_Cache applyEquality independent_functionElimination equalityTransitivity equalitySymmetry independent_pairFormation addLevel independent_isectElimination lambdaEquality imageElimination instantiate natural_numberEquality imageMemberEquality baseClosed universeEquality cumulativity

Latex:
\mforall{}[g:OGrp].  \mforall{}[a,b:|g|].    uiff(a  \mleq{}  b;e  \mleq{}  (b  *  (\msim{}  a)))



Date html generated: 2016_05_15-PM-00_13_41
Last ObjectModification: 2016_01_15-PM-11_05_56

Theory : groups_1


Home Index