Nuprl Lemma : mul-mono-poly-ringeq

[r:CRng]. ∀[m:iMonomial()]. ∀[p:iMonomial() List].
  ipolynomial-term(mul-mono-poly(m;p)) ≡ imonomial-term(m) (*) ipolynomial-term(p)


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 crng: CRng mul-mono-poly: mul-mono-poly(m;p) ipolynomial-term: ipolynomial-term(p) imonomial-term: imonomial-term(m) iMonomial: iMonomial() itermMultiply: left (*) right list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] iMonomial: iMonomial() int_nzero: -o crng: CRng so_apply: x[s] implies:  Q mul-mono-poly: mul-mono-poly(m;p) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] has-value: (a)↓ uimplies: supposing a prop: ringeq_int_terms: t1 ≡ t2 rng: Rng ipolynomial-term: ipolynomial-term(p) ifthenelse: if then else fi  btrue: tt and: P ∧ Q subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  list_induction ringeq_int_terms_wf ipolynomial-term_wf mul-mono-poly_wf1 itermMultiply_wf imonomial-term_wf list_wf iMonomial_wf list_ind_nil_lemma list_ind_cons_lemma value-type-has-value iMonomial-value-type mul-monomials_wf rng_car_wf crng_wf null_nil_lemma ring_term_value_const_lemma ring_term_value_mul_lemma rng_times_zero ring_term_value_wf int-to-ring-zero list-value-type equal_wf ipolynomial-term-cons-ringeq mul-monomials-ringeq cons_wf itermAdd_wf subtype_rel_product int_nzero_wf sorted_wf subtype_rel_self int_term_wf ringeq_int_terms_functionality ringeq_int_terms_transitivity itermAdd_functionality_wrt_ringeq itermMultiply_functionality_wrt_ringeq ringeq_int_terms_weakening ring_term_value_add_lemma rng_times_over_plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality hypothesisEquality hypothesis productElimination independent_pairEquality setElimination rename independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation callbyvalueReduce independent_isectElimination axiomEquality functionEquality intEquality equalitySymmetry equalityTransitivity applyEquality setEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term(mul-mono-poly(m;p))  \mequiv{}  imonomial-term(m)  (*)  ipolynomial-term(p)



Date html generated: 2018_05_21-PM-03_17_09
Last ObjectModification: 2018_05_19-AM-08_08_15

Theory : rings_1


Home Index