Nuprl Lemma : eq_list_wf

s:DSet. ∀as,bs:|s| List.  (as =b bs ∈ 𝔹)


Proof




Definitions occuring in Statement :  eq_list: as =b bs list: List bool: 𝔹 all: x:A. B[x] member: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: dset: DSet subtype_rel: A ⊆B guard: {T} or: P ∨ Q eq_list: as =b bs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) decidable: Dec(P) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff infix_ap: y
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list set_car_wf less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma null_nil_lemma btrue_wf product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf int_subtype_base null_cons_lemma bfalse_wf intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int list_ind_cons_lemma infix_ap_wf bool_wf set_eq_wf eqtt_to_assert assert_of_dset_eq list_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache applyEquality unionElimination promote_hyp hypothesis_subsumption productElimination baseClosed instantiate cumulativity applyLambdaEquality dependent_set_memberEquality addEquality imageElimination equalityElimination

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (as  =\msubb{}  bs  \mmember{}  \mBbbB{})



Date html generated: 2017_10_01-AM-09_54_47
Last ObjectModification: 2017_03_03-PM-00_49_09

Theory : list_2


Home Index