Nuprl Lemma : fmonalg_properties

g:AbMon. ∀a:CRng. ∀m:FMonAlg(g;a).
  (IsMonHom{g,m.alg↓rg↓xmn}(m.inj)
  ∧ (∀n:algebra{i:l}(a). ∀f:MonHom(g,n↓rg↓xmn).
       (m.umap f) !f':m.alg.car ⟶ n.car. (alg_hom_p(a; m.alg; n; f') ∧ ((f' m.inj) f ∈ (|g| ⟶ n.car)))))


Proof




Definitions occuring in Statement :  fmonalg: FMonAlg(g;a) fma_umap: f.umap fma_inj: f.inj fma_alg: f.alg alg_hom_p: alg_hom_p(a; m; n; f) algebra: algebra{i:l}(A) rng_of_alg: a↓rg alg_car: a.car compose: g uni_sat: !x:T. Q[x] all: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] equal: t ∈ T mul_mon_of_rng: r↓xmn crng: CRng monoid_hom: MonHom(M1,M2) monoid_hom_p: IsMonHom{M1,M2}(f) abmonoid: AbMon grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T fmonalg: FMonAlg(g;a) and: P ∧ Q cand: c∧ B uni_sat: !x:T. Q[x] alg_hom_p: alg_hom_p(a; m; n; f) module_hom_p: module_hom_p(a; m; n; f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] crng: CRng rng: Rng abmonoid: AbMon mon: Mon fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) implies:  Q algebra: algebra{i:l}(A) module: A-Module prop: monoid_hom: MonHom(M1,M2) subtype_rel: A ⊆B mul_mon_of_rng: r↓xmn grp_car: |g| pi1: fst(t) rng_of_alg: a↓rg rng_car: |r| sq_stable: SqStable(P) squash: T
Lemmas referenced :  fmonalg_wf crng_wf abmonoid_wf alg_car_wf rng_car_wf fma_alg_wf alg_hom_p_wf equal_wf grp_car_wf compose_wf fma_inj_wf monoid_hom_wf mul_mon_of_rng_wf rng_of_alg_wf algebra_wf sq_stable__monoid_hom_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation comment cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis setElimination rename independent_pairFormation productElimination sqequalRule independent_pairEquality isect_memberEquality isectElimination axiomEquality because_Cache lambdaEquality productEquality functionExtensionality applyEquality functionEquality equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}g:AbMon.  \mforall{}a:CRng.  \mforall{}m:FMonAlg(g;a).
    (IsMonHom\{g,m.alg\mdownarrow{}rg\mdownarrow{}xmn\}(m.inj)
    \mwedge{}  (\mforall{}n:algebra\{i:l\}(a).  \mforall{}f:MonHom(g,n\mdownarrow{}rg\mdownarrow{}xmn).
              (m.umap  n  f)  =  !f':m.alg.car  {}\mrightarrow{}  n.car.  (alg\_hom\_p(a;  m.alg;  n;  f')  \mwedge{}  ((f'  o  m.inj)  =  f))))



Date html generated: 2017_10_01-AM-10_01_25
Last ObjectModification: 2017_03_03-PM-01_03_55

Theory : polynom_1


Home Index