Nuprl Lemma : fmonalg_properties
∀g:AbMon. ∀a:CRng. ∀m:FMonAlg(g;a).
(IsMonHom{g,m.alg↓rg↓xmn}(m.inj)
∧ (∀n:algebra{i:l}(a). ∀f:MonHom(g,n↓rg↓xmn).
(m.umap n f) = !f':m.alg.car ⟶ n.car. (alg_hom_p(a; m.alg; n; f') ∧ ((f' o m.inj) = f ∈ (|g| ⟶ n.car)))))
Proof
Definitions occuring in Statement :
fmonalg: FMonAlg(g;a)
,
fma_umap: f.umap
,
fma_inj: f.inj
,
fma_alg: f.alg
,
alg_hom_p: alg_hom_p(a; m; n; f)
,
algebra: algebra{i:l}(A)
,
rng_of_alg: a↓rg
,
alg_car: a.car
,
compose: f o g
,
uni_sat: a = !x:T. Q[x]
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
,
mul_mon_of_rng: r↓xmn
,
crng: CRng
,
monoid_hom: MonHom(M1,M2)
,
monoid_hom_p: IsMonHom{M1,M2}(f)
,
abmonoid: AbMon
,
grp_car: |g|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
fmonalg: FMonAlg(g;a)
,
and: P ∧ Q
,
cand: A c∧ B
,
uni_sat: a = !x:T. Q[x]
,
alg_hom_p: alg_hom_p(a; m; n; f)
,
module_hom_p: module_hom_p(a; m; n; f)
,
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
,
uall: ∀[x:A]. B[x]
,
crng: CRng
,
rng: Rng
,
abmonoid: AbMon
,
mon: Mon
,
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
,
implies: P
⇒ Q
,
algebra: algebra{i:l}(A)
,
module: A-Module
,
prop: ℙ
,
monoid_hom: MonHom(M1,M2)
,
subtype_rel: A ⊆r B
,
mul_mon_of_rng: r↓xmn
,
grp_car: |g|
,
pi1: fst(t)
,
rng_of_alg: a↓rg
,
rng_car: |r|
,
sq_stable: SqStable(P)
,
squash: ↓T
Lemmas referenced :
fmonalg_wf,
crng_wf,
abmonoid_wf,
alg_car_wf,
rng_car_wf,
fma_alg_wf,
alg_hom_p_wf,
equal_wf,
grp_car_wf,
compose_wf,
fma_inj_wf,
monoid_hom_wf,
mul_mon_of_rng_wf,
rng_of_alg_wf,
algebra_wf,
sq_stable__monoid_hom_p
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
comment,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
independent_pairFormation,
productElimination,
sqequalRule,
independent_pairEquality,
isect_memberEquality,
isectElimination,
axiomEquality,
because_Cache,
lambdaEquality,
productEquality,
functionExtensionality,
applyEquality,
functionEquality,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
imageMemberEquality,
baseClosed,
imageElimination
Latex:
\mforall{}g:AbMon. \mforall{}a:CRng. \mforall{}m:FMonAlg(g;a).
(IsMonHom\{g,m.alg\mdownarrow{}rg\mdownarrow{}xmn\}(m.inj)
\mwedge{} (\mforall{}n:algebra\{i:l\}(a). \mforall{}f:MonHom(g,n\mdownarrow{}rg\mdownarrow{}xmn).
(m.umap n f) = !f':m.alg.car {}\mrightarrow{} n.car. (alg\_hom\_p(a; m.alg; n; f') \mwedge{} ((f' o m.inj) = f))))
Date html generated:
2017_10_01-AM-10_01_25
Last ObjectModification:
2017_03_03-PM-01_03_55
Theory : polynom_1
Home
Index