Nuprl Lemma : oal_lt_iff_grp_lt

s:LOSet. ∀g:OGrp. ∀ps,qs:|oal(s;g)|.  (ps << qs ⇐⇒ ps < qs)


Proof




Definitions occuring in Statement :  oal_lt: ps << qs oal_grp: oal_grp(s;g) oalist: oal(a;b) all: x:A. B[x] iff: ⇐⇒ Q ocgrp: OGrp grp_lt: a < b loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set oal_grp: oal_grp(s;g) grp_car: |g| uiff: uiff(P;Q) rev_implies:  Q prop: ocgrp: OGrp implies:  Q ab_binrel: x,y:T. E[x; y] binrel_ap: [r] b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} mon: Mon s_part: E\ grp_leq: a ≤ b grp_le: b pi2: snd(t) infix_ap: y oal_le: ps ≤{s,g} qs
Lemmas referenced :  set_car_wf oalist_wf ocmon_subtype_abdmonoid ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf abdmonoid_wf loset_wf grp_lt_is_sp_of_leq_a oal_grp_wf1 grp_lt_wf oal_grp_wf ocgrp_subtype_abdgrp iff_wf oal_lt_wf grp_leq_wf not_wf binrel_ap_functionality_wrt_breqv ab_binrel_wf s_part_wf oal_le_wf oal_lt_char binrel_ap_wf abdgrp_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache addLevel productElimination independent_pairFormation impliesFunctionality setElimination rename productEquality lambdaEquality cumulativity universeEquality independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.  \mforall{}ps,qs:|oal(s;g)|.    (ps  <<  qs  \mLeftarrow{}{}\mRightarrow{}  ps  <  qs)



Date html generated: 2016_05_16-AM-08_22_01
Last ObjectModification: 2015_12_28-PM-06_25_38

Theory : polynom_2


Home Index