Nuprl Lemma : oal_lt_iff_grp_lt
∀s:LOSet. ∀g:OGrp. ∀ps,qs:|oal(s;g)|. (ps << qs
⇐⇒ ps < qs)
Proof
Definitions occuring in Statement :
oal_lt: ps << qs
,
oal_grp: oal_grp(s;g)
,
oalist: oal(a;b)
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
ocgrp: OGrp
,
grp_lt: a < b
,
loset: LOSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
guard: {T}
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
oalist: oal(a;b)
,
dset_set: dset_set,
mk_dset: mk_dset(T, eq)
,
set_car: |p|
,
pi1: fst(t)
,
dset_list: s List
,
set_prod: s × t
,
dset_of_mon: g↓set
,
oal_grp: oal_grp(s;g)
,
grp_car: |g|
,
uiff: uiff(P;Q)
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
ocgrp: OGrp
,
implies: P
⇒ Q
,
ab_binrel: x,y:T. E[x; y]
,
binrel_ap: a [r] b
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
abdgrp: AbDGrp
,
abgrp: AbGrp
,
grp: Group{i}
,
mon: Mon
,
s_part: E\
,
grp_leq: a ≤ b
,
grp_le: ≤b
,
pi2: snd(t)
,
infix_ap: x f y
,
oal_le: ps ≤{s,g} qs
Lemmas referenced :
set_car_wf,
oalist_wf,
ocmon_subtype_abdmonoid,
ocgrp_subtype_ocmon,
subtype_rel_transitivity,
ocgrp_wf,
ocmon_wf,
abdmonoid_wf,
loset_wf,
grp_lt_is_sp_of_leq_a,
oal_grp_wf1,
grp_lt_wf,
oal_grp_wf,
ocgrp_subtype_abdgrp,
iff_wf,
oal_lt_wf,
grp_leq_wf,
not_wf,
binrel_ap_functionality_wrt_breqv,
ab_binrel_wf,
s_part_wf,
oal_le_wf,
oal_lt_char,
binrel_ap_wf,
abdgrp_wf,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
dependent_functionElimination,
hypothesisEquality,
applyEquality,
hypothesis,
instantiate,
independent_isectElimination,
sqequalRule,
because_Cache,
addLevel,
productElimination,
independent_pairFormation,
impliesFunctionality,
setElimination,
rename,
productEquality,
lambdaEquality,
cumulativity,
universeEquality,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}s:LOSet. \mforall{}g:OGrp. \mforall{}ps,qs:|oal(s;g)|. (ps << qs \mLeftarrow{}{}\mRightarrow{} ps < qs)
Date html generated:
2016_05_16-AM-08_22_01
Last ObjectModification:
2015_12_28-PM-06_25_38
Theory : polynom_2
Home
Index