Nuprl Lemma : oal_grp_wf1

s:LOSet. ∀g:OGrp.  (oal_grp(s;g) ∈ OMon)


Proof




Definitions occuring in Statement :  oal_grp: oal_grp(s;g) all: x:A. B[x] member: t ∈ T ocgrp: OGrp omon: OMon loset: LOSet
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T abdmonoid: AbDMon subtype_rel: A ⊆B guard: {T} uimplies: supposing a ocgrp: OGrp ocmon: OCMon abmonoid: AbMon dmon: DMon mon: Mon prop: oal_grp: oal_grp(s;g) grp_car: |g| pi1: fst(t) grp_le: b pi2: snd(t) infix_ap: y oal_le: ps ≤{s,g} qs ulinorder: UniformLinorder(T;x,y.R[x; y]) and: P ∧ Q uorder: UniformOrder(T;x,y.R[x; y]) order: Order(T;x,y.R[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) implies:  Q cand: c∧ B utrans: UniformlyTrans(T;x,y.E[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) dset: DSet refl: Refl(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) omon: OMon abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] or: P ∨ Q sq_type: SQType(T) uiff: uiff(P;Q) bfalse: ff band: p ∧b q ifthenelse: if then else fi  grp_eq: =b oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t dset_of_mon: g↓set set_eq: =b loset: LOSet poset: POSet{i} qoset: QOSet not: ¬A false: False bool: 𝔹 unit: Unit it: btrue: tt exists: x:A. B[x] bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q true: True label: ...$L... t rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ocgrp_abdgrp omon_inc ocmon_subtype_omon ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf omon_wf abdmonoid_dmon ocgrp_properties ocmon_properties abmonoid_properties comm_wf grp_car_wf grp_op_wf oal_le_is_order assert_witness oal_ble_wf oal_le_wf oal_le_connex set_car_wf oalist_wf loset_wf oal_grp_wf subtype_rel_sets mon_wf inverse_wf grp_id_wf grp_inv_wf eqfun_p_wf grp_eq_wf sq_stable__comm ulinorder_wf assert_wf grp_le_wf bool_wf infix_ap_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert band_wf btrue_wf bfalse_wf list_wf istype-assert sd_ordered_wf map_wf mon_subtype_grp_sig dmon_subtype_mon ocmon_subtype_abdmonoid abdmonoid_wf dmon_wf grp_sig_wf mem_wf dset_of_mon_wf dset_of_mon_wf0 istype-void eqff_to_assert bool_cases_sqequal assert-bnot eq_list_wf set_prod_wf assert_of_eq_list equal_functionality_wrt_subtype_rel2 not_wf subtype_rel_self assert_elim squash_wf true_wf abdgrp_wf member_wf not_assert_elim btrue_neq_bfalse assert_functionality_wrt_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt dependent_functionElimination applyEquality hypothesis instantiate independent_isectElimination sqequalRule setElimination rename universeIsType because_Cache independent_pairFormation productElimination isect_memberFormation_alt independent_functionElimination lambdaEquality_alt functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies axiomEquality equalityTransitivity equalitySymmetry setEquality cumulativity setIsType imageMemberEquality baseClosed imageElimination productIsType equalityIstype functionIsType unionElimination productEquality equalityElimination dependent_pairFormation_alt promote_hyp voidElimination applyLambdaEquality hyp_replacement natural_numberEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.    (oal\_grp(s;g)  \mmember{}  OMon)



Date html generated: 2019_10_16-PM-01_08_41
Last ObjectModification: 2018_11_27-AM-10_42_22

Theory : polynom_2


Home Index