Nuprl Lemma : oal_grp_wf1
∀s:LOSet. ∀g:OGrp.  (oal_grp(s;g) ∈ OMon)
Proof
Definitions occuring in Statement : 
oal_grp: oal_grp(s;g), 
all: ∀x:A. B[x], 
member: t ∈ T, 
ocgrp: OGrp, 
omon: OMon, 
loset: LOSet
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
abdmonoid: AbDMon, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
ocgrp: OGrp, 
ocmon: OCMon, 
abmonoid: AbMon, 
dmon: DMon, 
mon: Mon, 
prop: ℙ, 
oal_grp: oal_grp(s;g), 
grp_car: |g|, 
pi1: fst(t), 
grp_le: ≤b, 
pi2: snd(t), 
infix_ap: x f y, 
oal_le: ps ≤{s,g} qs, 
ulinorder: UniformLinorder(T;x,y.R[x; y]), 
and: P ∧ Q, 
uorder: UniformOrder(T;x,y.R[x; y]), 
order: Order(T;x,y.R[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
cand: A c∧ B, 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
dset: DSet, 
refl: Refl(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
omon: OMon, 
abdgrp: AbDGrp, 
abgrp: AbGrp, 
grp: Group{i}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_stable: SqStable(P), 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
or: P ∨ Q, 
sq_type: SQType(T), 
uiff: uiff(P;Q), 
bfalse: ff, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
grp_eq: =b, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
set_eq: =b, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
not: ¬A, 
false: False, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True, 
label: ...$L... t, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ocgrp_abdgrp, 
omon_inc, 
ocmon_subtype_omon, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
omon_wf, 
abdmonoid_dmon, 
ocgrp_properties, 
ocmon_properties, 
abmonoid_properties, 
comm_wf, 
grp_car_wf, 
grp_op_wf, 
oal_le_is_order, 
assert_witness, 
oal_ble_wf, 
oal_le_wf, 
oal_le_connex, 
set_car_wf, 
oalist_wf, 
loset_wf, 
oal_grp_wf, 
subtype_rel_sets, 
mon_wf, 
inverse_wf, 
grp_id_wf, 
grp_inv_wf, 
eqfun_p_wf, 
grp_eq_wf, 
sq_stable__comm, 
ulinorder_wf, 
assert_wf, 
grp_le_wf, 
bool_wf, 
infix_ap_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
bfalse_wf, 
list_wf, 
istype-assert, 
sd_ordered_wf, 
map_wf, 
mon_subtype_grp_sig, 
dmon_subtype_mon, 
ocmon_subtype_abdmonoid, 
abdmonoid_wf, 
dmon_wf, 
grp_sig_wf, 
mem_wf, 
dset_of_mon_wf, 
dset_of_mon_wf0, 
istype-void, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
eq_list_wf, 
set_prod_wf, 
assert_of_eq_list, 
equal_functionality_wrt_subtype_rel2, 
not_wf, 
subtype_rel_self, 
assert_elim, 
squash_wf, 
true_wf, 
abdgrp_wf, 
member_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
assert_functionality_wrt_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
setElimination, 
rename, 
universeIsType, 
because_Cache, 
independent_pairFormation, 
productElimination, 
isect_memberFormation_alt, 
independent_functionElimination, 
lambdaEquality_alt, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
cumulativity, 
setIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productIsType, 
equalityIstype, 
functionIsType, 
unionElimination, 
productEquality, 
equalityElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
voidElimination, 
applyLambdaEquality, 
hyp_replacement, 
natural_numberEquality
Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.    (oal\_grp(s;g)  \mmember{}  OMon)
Date html generated:
2019_10_16-PM-01_08_41
Last ObjectModification:
2018_11_27-AM-10_42_22
Theory : polynom_2
Home
Index