Nuprl Lemma : oal_grp_wf

s:LOSet. ∀g:AbDGrp.  (oal_grp(s;g) ∈ AbDGrp)


Proof




Definitions occuring in Statement :  oal_grp: oal_grp(s;g) all: x:A. B[x] member: t ∈ T abdgrp: AbDGrp loset: LOSet
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] oal_grp: oal_grp(s;g) grp_eq: =b grp_inv: ~ prop: uall: [x:A]. B[x] grp_id: e pi2: snd(t) grp_op: * pi1: fst(t) grp_car: |g| mon: Mon grp: Group{i} abgrp: AbGrp abdgrp: AbDGrp squash: T sq_stable: SqStable(P) implies:  Q uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] dmon: DMon abdmonoid: AbDMon subtype_rel: A ⊆B grp_sig: GrpSig ident: Ident(T;op;id) infix_ap: y assoc: Assoc(T;op) and: P ∧ Q monoid_p: IsMonoid(T;op;id) inverse: Inverse(T;op;id;inv) comm: Comm(T;op)
Lemmas referenced :  dset_properties oal_merge_comm oal_neg_right_inv oal_neg_left_inv oal_merge_assoc oal_nil_ident_r oal_nil_ident_l set_car_wf oalist_wf subtype_rel_sets mon_wf set_wf sq_stable__comm set_eq_wf oal_ble_wf oal_merge_wf2 oal_nil_wf oal_neg_wf2 bool_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf eqfun_p_wf grp_eq_wf abdgrp_wf loset_wf
Rules used in proof :  lemma_by_obid hypothesis sqequalHypSubstitution cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution rename setElimination hypothesisEquality thin isectElimination dependent_set_memberEquality productEquality functionEquality imageElimination baseClosed imageMemberEquality introduction independent_functionElimination independent_isectElimination universeEquality because_Cache lambdaEquality cumulativity setEquality instantiate applyEquality dependent_functionElimination dependent_pairEquality independent_pairEquality productElimination axiomEquality isect_memberEquality isect_memberFormation independent_pairFormation equalitySymmetry equalityTransitivity

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.    (oal\_grp(s;g)  \mmember{}  AbDGrp)



Date html generated: 2016_05_16-AM-08_20_46
Last ObjectModification: 2016_01_16-PM-11_57_47

Theory : polynom_2


Home Index