Nuprl Lemma : oal_grp_wf
∀s:LOSet. ∀g:AbDGrp.  (oal_grp(s;g) ∈ AbDGrp)
Proof
Definitions occuring in Statement : 
oal_grp: oal_grp(s;g), 
all: ∀x:A. B[x], 
member: t ∈ T, 
abdgrp: AbDGrp, 
loset: LOSet
Definitions unfolded in proof : 
member: t ∈ T, 
all: ∀x:A. B[x], 
oal_grp: oal_grp(s;g), 
grp_eq: =b, 
grp_inv: ~, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
grp_id: e, 
pi2: snd(t), 
grp_op: *, 
pi1: fst(t), 
grp_car: |g|, 
mon: Mon, 
grp: Group{i}, 
abgrp: AbGrp, 
abdgrp: AbDGrp, 
squash: ↓T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
dmon: DMon, 
abdmonoid: AbDMon, 
subtype_rel: A ⊆r B, 
grp_sig: GrpSig, 
ident: Ident(T;op;id), 
infix_ap: x f y, 
assoc: Assoc(T;op), 
and: P ∧ Q, 
monoid_p: IsMonoid(T;op;id), 
inverse: Inverse(T;op;id;inv), 
comm: Comm(T;op)
Lemmas referenced : 
dset_properties, 
oal_merge_comm, 
oal_neg_right_inv, 
oal_neg_left_inv, 
oal_merge_assoc, 
oal_nil_ident_r, 
oal_nil_ident_l, 
set_car_wf, 
oalist_wf, 
subtype_rel_sets, 
mon_wf, 
set_wf, 
sq_stable__comm, 
set_eq_wf, 
oal_ble_wf, 
oal_merge_wf2, 
oal_nil_wf, 
oal_neg_wf2, 
bool_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
abdgrp_wf, 
loset_wf
Rules used in proof : 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
dependent_set_memberEquality, 
productEquality, 
functionEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
independent_functionElimination, 
independent_isectElimination, 
universeEquality, 
because_Cache, 
lambdaEquality, 
cumulativity, 
setEquality, 
instantiate, 
applyEquality, 
dependent_functionElimination, 
dependent_pairEquality, 
independent_pairEquality, 
productElimination, 
axiomEquality, 
isect_memberEquality, 
isect_memberFormation, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.    (oal\_grp(s;g)  \mmember{}  AbDGrp)
Date html generated:
2016_05_16-AM-08_20_46
Last ObjectModification:
2016_01_16-PM-11_57_47
Theory : polynom_2
Home
Index