Nuprl Lemma : oal_grp_wf
∀s:LOSet. ∀g:AbDGrp.  (oal_grp(s;g) ∈ AbDGrp)
Proof
Definitions occuring in Statement : 
oal_grp: oal_grp(s;g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
abdgrp: AbDGrp
, 
loset: LOSet
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
oal_grp: oal_grp(s;g)
, 
grp_eq: =b
, 
grp_inv: ~
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
grp_id: e
, 
pi2: snd(t)
, 
grp_op: *
, 
pi1: fst(t)
, 
grp_car: |g|
, 
mon: Mon
, 
grp: Group{i}
, 
abgrp: AbGrp
, 
abdgrp: AbDGrp
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
dmon: DMon
, 
abdmonoid: AbDMon
, 
subtype_rel: A ⊆r B
, 
grp_sig: GrpSig
, 
ident: Ident(T;op;id)
, 
infix_ap: x f y
, 
assoc: Assoc(T;op)
, 
and: P ∧ Q
, 
monoid_p: IsMonoid(T;op;id)
, 
inverse: Inverse(T;op;id;inv)
, 
comm: Comm(T;op)
Lemmas referenced : 
dset_properties, 
oal_merge_comm, 
oal_neg_right_inv, 
oal_neg_left_inv, 
oal_merge_assoc, 
oal_nil_ident_r, 
oal_nil_ident_l, 
set_car_wf, 
oalist_wf, 
subtype_rel_sets, 
mon_wf, 
set_wf, 
sq_stable__comm, 
set_eq_wf, 
oal_ble_wf, 
oal_merge_wf2, 
oal_nil_wf, 
oal_neg_wf2, 
bool_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
abdgrp_wf, 
loset_wf
Rules used in proof : 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
dependent_set_memberEquality, 
productEquality, 
functionEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
independent_functionElimination, 
independent_isectElimination, 
universeEquality, 
because_Cache, 
lambdaEquality, 
cumulativity, 
setEquality, 
instantiate, 
applyEquality, 
dependent_functionElimination, 
dependent_pairEquality, 
independent_pairEquality, 
productElimination, 
axiomEquality, 
isect_memberEquality, 
isect_memberFormation, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.    (oal\_grp(s;g)  \mmember{}  AbDGrp)
Date html generated:
2016_05_16-AM-08_20_46
Last ObjectModification:
2016_01_16-PM-11_57_47
Theory : polynom_2
Home
Index