Nuprl Lemma : assert_of_eq_list

s:DSet. ∀as,bs:|s| List.  (↑(as =b bs) ⇐⇒ as bs ∈ (|s| List))


Proof




Definitions occuring in Statement :  eq_list: as =b bs list: List assert: b all: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: iff: ⇐⇒ Q rev_implies:  Q guard: {T} or: P ∨ Q eq_list: as =b bs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  btrue: tt true: True cons: [a b] bfalse: ff le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B infix_ap: y bool: 𝔹 unit: Unit uiff: uiff(P;Q) band: p ∧b q bnot: ¬bb cand: c∧ B
Lemmas referenced :  list_wf set_car_wf dset_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_witness intformeq_wf int_formula_prop_eq_lemma list-cases list_ind_nil_lemma null_nil_lemma nil_wf true_wf product_subtype_list null_cons_lemma btrue_wf null_wf bfalse_wf btrue_neq_bfalse cons_wf colength-cons-not-zero colength_wf_list istype-false le_wf eq_list_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le list_ind_cons_lemma assert_wf set_eq_wf eqtt_to_assert assert_of_dset_eq eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff equal_wf iff_transitivity assert_of_band reduce_hd_cons_lemma hd_wf squash_wf length_wf length_cons_ge_one subtype_rel_list top_wf nat_wf reduce_tl_cons_lemma tl_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation productElimination independent_pairEquality axiomEquality functionIsTypeImplies inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality because_Cache unionElimination equalityIsType4 baseClosed promote_hyp hypothesis_subsumption dependent_set_memberEquality_alt productIsType equalityIsType3 equalityIsType1 equalityIsType2 instantiate imageElimination baseApply closedConclusion applyEquality intEquality equalityElimination cumulativity productEquality universeEquality imageMemberEquality

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (\muparrow{}(as  =\msubb{}  bs)  \mLeftarrow{}{}\mRightarrow{}  as  =  bs)



Date html generated: 2019_10_16-PM-01_01_40
Last ObjectModification: 2018_10_08-PM-00_07_58

Theory : list_2


Home Index