Nuprl Lemma : oal_lv_neg

s:LOSet. ∀g:AbDGrp. ∀ps:|oal(s;g)|.  ((¬(ps 00 ∈ |oal(s;g)|))  (lv(--ps) (~ lv(ps)) ∈ |g|))


Proof




Definitions occuring in Statement :  oal_lv: lv(ps) oal_neg: --ps oal_nil: 00 oalist: oal(a;b) all: x:A. B[x] not: ¬A implies:  Q apply: a equal: t ∈ T abdgrp: AbDGrp grp_inv: ~ grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T squash: T uall: [x:A]. B[x] prop: abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} mon: Mon subtype_rel: A ⊆B abdmonoid: AbDMon dmon: DMon so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a sq_stable: SqStable(P) true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A false: False dset: DSet loset: LOSet poset: POSet{i} qoset: QOSet oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe grp_car_wf lookup_oal_lk subtype_rel_sets mon_wf inverse_wf grp_op_wf grp_id_wf grp_inv_wf comm_wf eqfun_p_wf grp_eq_wf sq_stable__comm oal_neg_wf2 subtype_rel_self iff_weakening_equal oal_nil_wf istype-void set_car_wf oalist_wf abdgrp_wf loset_wf oal_merge_wf2 oal_neg_left_inv oal_nil_ident_l lookup_wf list_wf poset_sig_wf oal_lk_neg oal_neg_wf oal_lk_wf lookup_oal_neg grp_subtype_igrp abgrp_subtype_grp abdgrp_subtype_abgrp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType instantiate universeEquality setElimination rename dependent_functionElimination sqequalRule setEquality cumulativity because_Cache setIsType independent_isectElimination independent_functionElimination imageMemberEquality baseClosed natural_numberEquality productElimination functionIsType equalityIstype applyLambdaEquality voidElimination productEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.  \mforall{}ps:|oal(s;g)|.    ((\mneg{}(ps  =  00))  {}\mRightarrow{}  (lv(--ps)  =  (\msim{}  lv(ps))))



Date html generated: 2019_10_16-PM-01_08_22
Last ObjectModification: 2018_11_27-AM-10_31_05

Theory : polynom_2


Home Index