Nuprl Lemma : oal_lk_neg
∀s:LOSet. ∀g:AbDGrp. ∀ps:|oal(s;g)|.  ((¬(ps = 00 ∈ |oal(s;g)|)) ⇒ (lk(--ps) = lk(ps) ∈ |s|))
Proof
Definitions occuring in Statement : 
oal_lk: lk(ps), 
oal_neg: --ps, 
oal_nil: 00, 
oalist: oal(a;b), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
equal: s = t ∈ T, 
abdgrp: AbDGrp, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
abdgrp: AbDGrp, 
abgrp: AbGrp, 
grp: Group{i}, 
abdmonoid: AbDMon, 
dmon: DMon, 
uall: ∀[x:A]. B[x], 
mon: Mon, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset: DSet, 
guard: {T}, 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
set_prod: s × t, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
oalist: oal(a;b), 
dset_set: dset_set, 
dset_list: s List, 
dset_of_mon: g↓set, 
oal_cons_pr: oal_cons_pr(x;y;ws), 
oal_neg: --ps, 
top: Top, 
pi2: snd(t), 
oal_lk: lk(ps)
Lemmas referenced : 
oalist_cases_c, 
subtype_rel_sets, 
mon_wf, 
inverse_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
sq_stable__comm, 
not_wf, 
equal_wf, 
set_car_wf, 
oalist_wf, 
oal_nil_wf, 
oal_lk_wf, 
oal_neg_wf2, 
abdgrp_wf, 
loset_wf, 
oal_neg_eq_nil, 
istype-void, 
oal_cons_pr_wf, 
istype-assert, 
before_wf, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
map_cons_lemma, 
reduce_hd_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
isectElimination, 
setEquality, 
hypothesis, 
cumulativity, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality_alt, 
setIsType, 
universeIsType, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionEquality, 
voidElimination, 
equalityIstype, 
productElimination, 
functionIsType, 
isect_memberEquality_alt
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.  \mforall{}ps:|oal(s;g)|.    ((\mneg{}(ps  =  00))  {}\mRightarrow{}  (lk(--ps)  =  lk(ps)))
Date html generated:
2019_10_16-PM-01_08_14
Last ObjectModification:
2018_11_27-AM-10_31_07
Theory : polynom_2
Home
Index