Nuprl Lemma : oal_lk_neg

s:LOSet. ∀g:AbDGrp. ∀ps:|oal(s;g)|.  ((¬(ps 00 ∈ |oal(s;g)|))  (lk(--ps) lk(ps) ∈ |s|))


Proof




Definitions occuring in Statement :  oal_lk: lk(ps) oal_neg: --ps oal_nil: 00 oalist: oal(a;b) all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T abdgrp: AbDGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} abdmonoid: AbDMon dmon: DMon uall: [x:A]. B[x] mon: Mon prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q sq_stable: SqStable(P) squash: T loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet guard: {T} not: ¬A false: False iff: ⇐⇒ Q and: P ∧ Q set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set dset_list: List dset_of_mon: g↓set oal_cons_pr: oal_cons_pr(x;y;ws) oal_neg: --ps top: Top pi2: snd(t) oal_lk: lk(ps)
Lemmas referenced :  oalist_cases_c subtype_rel_sets mon_wf inverse_wf grp_car_wf grp_op_wf grp_id_wf grp_inv_wf comm_wf eqfun_p_wf grp_eq_wf sq_stable__comm not_wf equal_wf set_car_wf oalist_wf oal_nil_wf oal_lk_wf oal_neg_wf2 abdgrp_wf loset_wf oal_neg_eq_nil istype-void oal_cons_pr_wf istype-assert before_wf map_wf set_prod_wf dset_of_mon_wf map_cons_lemma reduce_hd_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality sqequalRule instantiate isectElimination setEquality hypothesis cumulativity setElimination rename because_Cache lambdaEquality_alt setIsType universeIsType inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination imageMemberEquality baseClosed imageElimination functionEquality voidElimination equalityIstype productElimination functionIsType isect_memberEquality_alt

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.  \mforall{}ps:|oal(s;g)|.    ((\mneg{}(ps  =  00))  {}\mRightarrow{}  (lk(--ps)  =  lk(ps)))



Date html generated: 2019_10_16-PM-01_08_14
Last ObjectModification: 2018_11_27-AM-10_31_07

Theory : polynom_2


Home Index