Nuprl Lemma : es-interface-set-subtype

[Info,A:Type]. ∀[P:A ─→ ℙ]. ∀[X:EClass(A)].
  (X ∈ EClass({a:A| P[a]} )) supposing ((∀es:EO+(Info). ∀e:E(X).  P[X(e)]) and Singlevalued(X))


Proof




Definitions occuring in Statement :  es-E-interface: E(X) sv-class: Singlevalued(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] universe: Type
Lemmas :  all_wf event-ordering+_wf es-E-interface_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype top_wf eclass-val_wf assert_elim in-eclass_wf subtype_base_sq bool_wf bool_subtype_base sv-class_wf eclass_wf decidable__assert assert_wf bag_wf bag-only_wf2 eq_int_wf bag-size_wf nat_wf le_wf not_wf assert_of_eq_int subtype-bag-only subtype_rel_bag decidable__lt false_wf le_antisymmetry_iff add_functionality_wrt_le add-zero le-add-cancel subtype_rel_sets equal_wf iff_weakening_equal single-valued-bag-if-le1 neg_assert_of_eq_int subtype-bag-empty
\mforall{}[Info,A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[X:EClass(A)].
    (X  \mmember{}  EClass(\{a:A|  P[a]\}  ))  supposing  ((\mforall{}es:EO+(Info).  \mforall{}e:E(X).    P[X(e)])  and  Singlevalued(X))



Date html generated: 2015_07_17-PM-01_03_49
Last ObjectModification: 2015_02_04-PM-05_30_30

Home Index