Nuprl Lemma : two-intersecting-wait-set-exists

t:ℕ. ∀A:Id List.
  (∃W:{a:Id| (a ∈ A)}  List List
    ((∀ws:{a:Id| (a ∈ A)}  List. ((ws ∈ W) ⇐⇒ (||ws|| (t 1) ∈ ℤ) ∧ no_repeats({a:Id| (a ∈ A)} ;ws)))
    ∧ two-intersection(A;W))) supposing 
     (no_repeats(Id;A) and 
     (||A|| ((2 t) 1) ∈ ℤ))


Proof




Definitions occuring in Statement :  two-intersection: two-intersection(A;W) Id: Id no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| list: List nat: uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  multiply: m add: m natural_number: $n int: equal: t ∈ T
Lemmas :  no_repeats_witness Id_wf combinations-list decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf all_wf list_wf iff_wf l_member_wf length_wf no_repeats_wf two-intersection_wf equal_wf nat_wf int_seg_wf decidable__equal_Id length_wf_nat equipollent_functionality_wrt_equipollent equipollent-length equipollent_weakening_ext-eq ext-eq_weakening equipollent-nsub two-intersecting-wait-set
\mforall{}t:\mBbbN{}.  \mforall{}A:Id  List.
    (\mexists{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List
        ((\mforall{}ws:\{a:Id|  (a  \mmember{}  A)\}    List.  ((ws  \mmember{}  W)  \mLeftarrow{}{}\mRightarrow{}  (||ws||  =  (t  +  1))  \mwedge{}  no\_repeats(\{a:Id|  (a  \mmember{}  A)\}  ;ws))\000C)
        \mwedge{}  two-intersection(A;W)))  supposing 
          (no\_repeats(Id;A)  and 
          (||A||  =  ((2  *  t)  +  1)))



Date html generated: 2015_07_17-AM-11_29_15
Last ObjectModification: 2015_01_28-AM-01_34_39

Home Index