Nuprl Lemma : combinations-list

[A:Type]. ∀n:ℕ(A ~ ℕ (∀k:ℕ. ∃C:A List List. ∀L:A List. ((L ∈ C) ⇐⇒ (||L|| k ∈ ℤ) ∧ no_repeats(A;L))))


Proof




Definitions occuring in Statement :  equipollent: B no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T nat: exists: x:A. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B combination: Combination(n;T) prop: cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] l_member: (x ∈ l) ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top sq_stable: SqStable(P) squash: T guard: {T}
Lemmas referenced :  nat_wf equipollent_wf int_seg_wf combinations_wf combination_wf combinations_wf_int count-combinations equipollent_functionality_wrt_equipollent combination_functionality equipollent_weakening_ext-eq ext-eq_weakening equipollent-iff-list subtype_rel_list list_wf no_repeats_witness l_member_wf equal_wf length_wf no_repeats_wf all_wf iff_wf length_wf_nat select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf sq_stable__no_repeats equal_functionality_wrt_subtype_rel2 less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality natural_numberEquality setElimination rename universeEquality dependent_pairFormation because_Cache dependent_functionElimination independent_functionElimination independent_isectElimination productElimination applyEquality lambdaEquality sqequalRule independent_pairFormation productEquality intEquality dependent_set_memberEquality unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality imageMemberEquality baseClosed imageElimination promote_hyp

Latex:
\mforall{}[A:Type]
    \mforall{}n:\mBbbN{}.  (A  \msim{}  \mBbbN{}n  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \mexists{}C:A  List  List.  \mforall{}L:A  List.  ((L  \mmember{}  C)  \mLeftarrow{}{}\mRightarrow{}  (||L||  =  k)  \mwedge{}  no\_repeats(A;L))))



Date html generated: 2018_05_21-PM-08_10_27
Last ObjectModification: 2017_07_26-PM-05_46_01

Theory : general


Home Index