Nuprl Lemma : es-before-pred-length
∀[es:EO]. ∀[e:E].  ||before(e)|| = (||before(pred(e))|| + 1) ∈ ℤ supposing ¬↑first(e)
Proof
Definitions occuring in Statement : 
es-before: before(e)
, 
es-first: first(e)
, 
es-pred: pred(e)
, 
es-E: E
, 
event_ordering: EO
, 
length: ||as||
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Lemmas : 
es-causl-swellfnd, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
not_wf, 
assert_wf, 
es-first_wf2, 
nat_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
es-causl_wf, 
zero-le-nat, 
le_wf, 
add-mul-special, 
zero-mul, 
es-E_wf, 
event_ordering_wf, 
bool_wf, 
length_of_nil_lemma, 
equal-wf-T-base, 
bnot_wf, 
es-pred_wf, 
length-append, 
length_of_cons_lemma, 
add_functionality_wrt_eq, 
length_wf, 
es-before_wf, 
es-pred-locl, 
es-causl_weakening, 
iff_weakening_equal, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot
\mforall{}[es:EO].  \mforall{}[e:E].    ||before(e)||  =  (||before(pred(e))||  +  1)  supposing  \mneg{}\muparrow{}first(e)
Date html generated:
2015_07_17-AM-08_44_20
Last ObjectModification:
2015_02_04-AM-07_09_32
Home
Index