Nuprl Lemma : last-event-of-set

es:EO. ∀n:ℕ+. ∀f:ℕn ─→ E.  ∃k:ℕn. ∀i:ℕn. i ≤loc k  supposing ∀i,j:ℕn.  (loc(f i) loc(f j) ∈ Id)


Proof




Definitions occuring in Statement :  es-le: e ≤loc e'  es-loc: loc(e) es-E: E event_ordering: EO Id: Id nat_plus: + int_seg: {i..j-} uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ─→ B[x] natural_number: $n equal: t ∈ T
Lemmas :  nat_plus_properties all_wf int_seg_wf es-E_wf isect_wf equal_wf Id_wf es-loc_wf exists_wf es-le_wf primrec-wf-nat-plus nat_plus_wf event_ordering_wf false_wf lelt_wf decidable__equal_int subtype_base_sq int_subtype_base es-le-self not-equal-2 sq_stable__le add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less-iff-le le-add-cancel2 subtype_rel_dep_function subtype_rel-int_seg decidable__le not-le-2 minus-one-mul add-swap add-mul-special zero-mul subtype_rel_self decidable__lt decidable__es-le le_weakening2 and_wf decidable__es-locl es-le-not-locl es-locl_transitivity1 es-le_weakening
\mforall{}es:EO.  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  E.    \mexists{}k:\mBbbN{}n.  \mforall{}i:\mBbbN{}n.  f  i  \mleq{}loc  f  k    supposing  \mforall{}i,j:\mBbbN{}n.    (loc(f  i)  =  loc(f  j))



Date html generated: 2015_07_17-AM-08_39_51
Last ObjectModification: 2015_01_27-PM-02_43_52

Home Index