Nuprl Lemma : Paxos-partial-spec8-locations

[Info:Type]. [es:EO+(Info)]. [T:Type]. [leader:  Id]. [failset:Id List]. [1a:EClass(Id  )].
[Decide,Input:EClass(T)]. [f:]. [acceptors:Id List]. [1b:EClass(Id    (  T?))]. [2a:EClass(Id    T)].
[2b:EClass(Id    )].
  ([e:E(1a)]. ((fst(1a(e))) = (leader (snd(1a(e))))))
   ([e:E(1b)]. (loc(e) = (leader (fst(snd(1b(e)))))))
   ([e:E(2a)]. ((fst(2a(e))) = (leader (fst(snd(2a(e)))))))
   ([e:E(2b)]. (loc(e) = (leader (fst(snd(2b(e))))))) 
  supposing Paxos-partial-spec8{i:l}(Info; es; T; f; acceptors; leader; Input; Decide; 1a; 1b; 2a; 2b; failset)


Proof not projected




Definitions occuring in Statement :  Paxos-partial-spec8: Paxos-partial-spec8{i:l}(Info; es; T; f; acceptors; leader; Input; Decide; 1a; 1b; 2a; 2b; failset) es-E-interface: E(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) Id: Id bool: nat_plus: nat: uimplies: b supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P  Q unit: Unit apply: f a function: x:A  B[x] product: x:A  B[x] union: left + right list: type List universe: Type equal: s = t
Definitions :  es-class-reply-or-fail: es-class-reply-or-fail so_lambda: so_lambda(x,y,z.t[x; y; z]) es-class-mcast-fail: es-class-mcast-fail exists: x:A. B[x] it: inr: inr x  inl: inl x  accum-class: accum-class(a,x.f[a; x];x.base[x];X) es-tagged-true-class: Tagged_tt(X) decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b guard: {T} sq_type: SQType(T) minus: -n es-prior-class-when: (X'?d) when Y le_int: i z j map-class: (f[v] where v from X) rev_implies: P  Q iff: P  Q or: P  Q multiply: n * m grp_car: |g| atom: Atom$n p-outcome: Outcome false: False imax: imax(a;b) es-interface-accum: es-interface-accum(f;x;X) spread: spread def permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] empty-bag: {} single-bag: {x} lt_int: i <z j spreadn: spread3 es-filter-image: f[X] atom: Atom es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x bag: bag(T) int_nzero: void: Void length: ||as|| real: rationals: so_lambda: x.t[x] natural_number: $n add: n + m es-collect-opt-max: es-collect-opt-max implies: P  Q event_ordering: EO es-E: E lambda: x.A[x] subtype: S  T fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) let: let dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B set: {x:A| B[x]}  all: x:A. B[x] es-loc: loc(e) axiom: Ax pi2: snd(t) apply: f a eclass-val: X(e) pi1: fst(t) top: Top es-E-interface: E(X) pair: <a, b> prop: Paxos-partial-spec8: Paxos-partial-spec8{i:l}(Info; es; T; f; acceptors; leader; Input; Decide; 1a; 1b; 2a; 2b; failset) nat_plus: so_lambda: x y.t[x; y] list: type List uimplies: b supposing a and: P  Q equal: s = t event-ordering+: EO+(Info) universe: Type uall: [x:A]. B[x] function: x:A  B[x] member: t  T isect: x:A. B[x] D: Error :D,  unit: Unit nat: product: x:A  B[x] union: left + right Id: Id eclass: EClass(A[eo; e]) CollapseTHEN: Error :CollapseTHEN,  int: bool: MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Try: Error :Try,  Complete: Error :Complete,  Auto: Error :Auto,  cand: A c B btrue: tt in-eclass: e  X true: True squash: T es-causle: e c e' l_member: (x  l) limited-type: LimitedType sqequal: s ~ t l_all: (xL.P[x]) ExRepD: Error :ExRepD,  ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  BHyp: Error :BHyp,  es-prior-val: (X)' es-prior-interface: prior(X) es-interface-at: X@i intensional-universe: IType tag-by: zT ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) fpf-dom: x  dom(f) infix_ap: x f y es-causl: (e < e') tactic: Error :tactic,  ext-eq: A  B rev_subtype_rel: A r B rev_uimplies: rev_uimplies(P;Q) eclass-compose1: f o X so_apply: x[s] ma-state: State(ds) es-interface-part: (X|g=i) class-program: ClassProgram(T) es-empty-interface: Empty cond-class: [X?Y] base: Base imax-class: (maximum f[v]  lb with v from X) es-interface-val: val(X,e) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) bfalse: ff eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b bag-only: only(bs) bag-size: bag-size(bs) es-interface-predecessors: (X)(e) filter: filter(P;l) alle-lt: e<e'.P[e] es-first-at: e is first@ i s.t.  e.P[e] outl: outl(x) isl: isl(x) list-max: list-max(x.f[x];L) skip: Error :skip,  HypSubst: Error :HypSubst
Lemmas :  map-class-val is-map-class collect-opt-max-val rev_implies_wf iff_wf es-interface-predecessors_wf filter_wf list-max_wf outl_wf is-collect-opt-max assert_functionality_wrt_uiff eqff_to_assert uiff_transitivity assert_of_lt_int eqtt_to_assert es-filter-image-val es-is-filter-image bnot_of_lt_int assert_of_le_int bnot_wf member-interface-at es-interface-at_wf es-interface-val_wf2 squash_wf es-E-filter-image ext-eq_inversion subtype_rel_functionality_wrt_implies subtype_rel_weakening ext-eq_weakening true_wf is-prior-class-when prior-class-when-val sq_stable__assert intensional-universe_wf product_subtype_base unit_subtype_base union_subtype_base pi1_wf atom2_subtype_base set_subtype_base int_subtype_base assert_wf subtype_base_sq bool_subtype_base assert_elim in-eclass_wf es-loc_wf eclass-val_wf Paxos-partial-spec8_wf eclass_wf Id_wf nat_plus_wf es-E-interface_wf nat_wf event-ordering+_wf member_wf subtype_rel_wf es-interface-top unit_wf bool_wf nat_plus_inc es-E_wf event-ordering+_inc es-collect-opt-max_wf pi1_wf_top pi2_wf top_wf es-base-E_wf subtype_rel_self es-filter-image_wf permutation_wf bag_wf ifthenelse_wf lt_int_wf nat_properties single-bag_wf empty-bag_wf es-interface-accum_wf le_wf not_wf false_wf imax_wf imax_ub es-prior-class-when_wf map-class_wf le_int_wf es-interface-subtype_rel2 es-tagged-true-class_wf accum-class_wf it_wf uall_wf es-class-mcast-fail_wf es-class-reply-or-fail_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[T:Type].  \mforall{}[leader:\mBbbN{}  {}\mrightarrow{}  Id].  \mforall{}[failset:Id  List].
\mforall{}[1a:EClass(Id  \mtimes{}  \mBbbN{})].  \mforall{}[Decide,Input:EClass(T)].  \mforall{}[f:\mBbbN{}\msupplus{}].  \mforall{}[acceptors:Id  List].  \mforall{}[1b:EClass(Id
                                                                                                                                                                          \mtimes{}  \mBbbN{}
                                                                                                                                                                          \mtimes{}  (\mBbbN{}  \mtimes{}  T?))].
\mforall{}[2a:EClass(Id  \mtimes{}  \mBbbN{}  \mtimes{}  T)].  \mforall{}[2b:EClass(Id  \mtimes{}  \mBbbN{}  \mtimes{}  \mBbbB{})].
    (\mforall{}[e:E(1a)].  ((fst(1a(e)))  =  (leader  (snd(1a(e))))))
    \mwedge{}  (\mforall{}[e:E(1b)].  (loc(e)  =  (leader  (fst(snd(1b(e)))))))
    \mwedge{}  (\mforall{}[e:E(2a)].  ((fst(2a(e)))  =  (leader  (fst(snd(2a(e)))))))
    \mwedge{}  (\mforall{}[e:E(2b)].  (loc(e)  =  (leader  (fst(snd(2b(e))))))) 
    supposing  Paxos-partial-spec8\{i:l\}(Info;
                                                                          es;
                                                                          T;
                                                                          f;
                                                                          acceptors;
                                                                          leader;
                                                                          Input;
                                                                          Decide;
                                                                          1a;
                                                                          1b;
                                                                          2a;
                                                                          2b;
                                                                          failset)


Date html generated: 2011_10_20-PM-04_47_51
Last ObjectModification: 2011_06_18-PM-02_14_11

Home Index