Nuprl Lemma : cs-ref-map-step

[V:Type]
  ({v1,v2:V. ((v1 = v2))}
   (A:Id List. W:{a:Id| (a  A)}  List List.
        f:ConsensusState  (consensus-state3(V) List)
          (cs-ref-map-constraints(V;A;W;f)
           (x,y:ts-reachable(consensus-ts4(V;A;W)).
                ((x ts-rel(consensus-ts4(V;A;W)) y)
                 {(||f x||  ||f y||)
                    (i:
                       ((j:||f x||. f y[j] = f x[j] supposing (j = i))
                        (||f y|| = (||f x|| + 1))  (f y[||f x||] = INITIAL) supposing ||f x|| < ||f y||))}))) 
        supposing ||W||  1 ))


Proof not projected




Definitions occuring in Statement :  cs-ref-map-constraints: cs-ref-map-constraints(V;A;W;f) consensus-ts4: consensus-ts4(V;A;W) consensus-state4: ConsensusState cs-initial: INITIAL consensus-state3: consensus-state3(T) Id: Id select: l[i] length: ||as|| int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] guard: {T} infix_ap: x f y ge: i  j  le: A  B all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q and: P  Q less_than: a < b set: {x:A| B[x]}  apply: f a function: x:A  B[x] list: type List add: n + m natural_number: $n int: universe: Type equal: s = t l_member: (x  l) ts-reachable: ts-reachable(ts) ts-rel: ts-rel(ts)
Definitions :  so_lambda: x.t[x] cand: A c B prop: false: False member: t  T le: A  B and: P  Q infix_ap: x f y ge: i  j  uimplies: b supposing a all: x:A. B[x] not: A exists: x:A. B[x] guard: {T} implies: P  Q uall: [x:A]. B[x] pi2: snd(t) pi1: fst(t) ts-rel: ts-rel(ts) ts-type: ts-type(ts) consensus-ts4: consensus-ts4(V;A;W) subtype: S  T top: Top squash: T true: True rev_implies: P  Q iff: P  Q Id: Id or: P  Q so_apply: x[s] consensus-state4: ConsensusState bfalse: ff btrue: tt ifthenelse: if b then t else f fi  cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i lelt: i  j < k cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  int_seg: {i..j} nat: null: null(as) assert: b ts-init: ts-init(ts) ts-reachable: ts-reachable(ts) ts-stable-rel: ts-stable-rel(ts;x,y.R[x; y]) decidable: Dec(P) cs-ref-map-constraints: cs-ref-map-constraints(V;A;W;f) consensus-rel: CR[x,y] uiff: uiff(P;Q) sq_type: SQType(T) fpf-single: x : v fpf-domain: fpf-domain(f) unit: Unit bool: ycomb: Y length: ||as|| it:
Lemmas :  equal_wf not_wf exists_wf guard_wf ge_wf consensus-state3_wf consensus-state4_wf cs-ref-map-constraints_wf ts-type_wf ts-reachable_wf consensus-ts4_wf ts-rel_wf l_member_wf Id_wf length_wf rel_rel_star le_wf cs-inning_wf consensus-ts4-inning-rel top_wf length_wf_nat decidable__le cs-initial_wf non_neg_length select_wf isect_wf int_seg_wf all_wf decidable__equal_Id true_wf squash_wf fpf_wf member_wf fpf-trivial-subtype-top iff_wf subtype-top subtype-fpf2 cs-estimate_wf fpf-domain_wf atom2_subtype_base subtype_base_sq fpf-domain-join iff_functionality_wrt_iff member_singleton or_functionality_wrt_iff int-deq_wf fpf-single_wf subtype_rel_simple_product subtype_rel_self subtype_rel_function member-fpf-dom deq_wf fpf-dom_wf assert_wf fpf-ap_wf int_seg_properties fpf-join-ap-sq assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert iff_weakening_uiff bnot_wf bool_wf member-fpf-domain int_subtype_base cs-inning-committed_wf cs-inning-committable_wf or_wf cs-archived_wf cs-not-completed_wf lelt_wf cs-ref-map-equal less_than_wf nat_wf and_wf decidable__cs-not-completed hd_member hd_wf false_wf consensus-ts4-estimate-domain fpf-empty_wf consensus-rel_wf rel_star_wf

\mforall{}[V:Type]
    (\{\mexists{}v1,v2:V.  (\mneg{}(v1  =  v2))\}
    {}\mRightarrow{}  (\mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.
                \mforall{}f:ConsensusState  {}\mrightarrow{}  (consensus-state3(V)  List)
                    (cs-ref-map-constraints(V;A;W;f)
                    {}\mRightarrow{}  (\mforall{}x,y:ts-reachable(consensus-ts4(V;A;W)).
                                ((x  ts-rel(consensus-ts4(V;A;W))  y)
                                {}\mRightarrow{}  \{(||f  x||  \mleq{}  ||f  y||)
                                      \mwedge{}  (\mexists{}i:\mBbbZ{}
                                              ((\mforall{}j:\mBbbN{}||f  x||.  f  y[j]  =  f  x[j]  supposing  \mneg{}(j  =  i))
                                              \mwedge{}  (||f  y||  =  (||f  x||  +  1))  \mwedge{}  (f  y[||f  x||]  =  INITIAL) 
                                                  supposing  ||f  x||  <  ||f  y||))\}))) 
                supposing  ||W||  \mgeq{}  1  ))


Date html generated: 2012_01_23-PM-12_05_01
Last ObjectModification: 2011_12_14-PM-04_14_56

Home Index