Nuprl Lemma : hdf-state-single-val_wf

[A,B:Type]. ∀[X:hdataflow(A;B ─→ B)]. ∀[b:B].
  (hdf-state-single-val(X;b) ∈ hdataflow(A;B)) supposing (hdf-single-valued(X;A;B ─→ B) and valueall-type(B))


Proof




Definitions occuring in Statement :  hdf-state-single-val: hdf-state-single-val(X;b) hdf-single-valued: hdf-single-valued(X;A;B) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  hdf-single-valued_wf valueall-type_wf hdataflow_wf bfalse_wf hdataflow-ext bag_wf unit_wf2 bag_null_empty_lemma mk-hdf_wf nil_wf bag-null_wf bool_wf eqtt_to_assert assert-bag-null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base single-valued-bag_wf hdf-run_wf valueall-type-has-valueall evalall-reduce and_wf pi1_wf_top subtype_rel_product top_wf subtype_top cons_wf iter_hdf_cons_lemma list_wf single-bag_wf decidable__lt bag-size_wf nat_wf bag-size-is-zero empty-bag_wf sv-bag-only_wf hdf-halt_wf
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  B)].  \mforall{}[b:B].
    (hdf-state-single-val(X;b)  \mmember{}  hdataflow(A;B))  supposing 
          (hdf-single-valued(X;A;B  {}\mrightarrow{}  B)  and 
          valueall-type(B))



Date html generated: 2015_07_17-AM-08_05_55
Last ObjectModification: 2015_01_27-PM-00_16_52

Home Index