Nuprl Lemma : hdf-state1-single-val_wf
∀[A,B,C:Type]. ∀[f:B ─→ C ─→ C]. ∀[X:hdataflow(A;B)]. ∀[b:C].
  (hdf-state1-single-val(f;X;b) ∈ hdataflow(A;C)) supposing (hdf-single-valued(X;A;B) and valueall-type(C))
Proof
Definitions occuring in Statement : 
hdf-state1-single-val: hdf-state1-single-val(f;X;b)
, 
hdf-single-valued: hdf-single-valued(X;A;B)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
hdf-single-valued_wf, 
valueall-type_wf, 
hdataflow_wf, 
bfalse_wf, 
hdataflow-ext, 
bag_wf, 
unit_wf2, 
bag_null_empty_lemma, 
mk-hdf_wf, 
nil_wf, 
bag-null_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
single-valued-bag_wf, 
hdf-run_wf, 
valueall-type-has-valueall, 
evalall-reduce, 
and_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
subtype_top, 
cons_wf, 
iter_hdf_cons_lemma, 
list_wf, 
single-bag_wf, 
decidable__lt, 
bag-size_wf, 
nat_wf, 
bag-size-is-zero, 
empty-bag_wf, 
sv-bag-only_wf, 
hdf-halt_wf
\mforall{}[A,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C  {}\mrightarrow{}  C].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[b:C].
    (hdf-state1-single-val(f;X;b)  \mmember{}  hdataflow(A;C))  supposing 
          (hdf-single-valued(X;A;B)  and 
          valueall-type(C))
Date html generated:
2015_07_17-AM-08_05_57
Last ObjectModification:
2015_01_27-PM-00_16_56
Home
Index