Nuprl Lemma : p-union_wf

[p:FinProbSpace]. ∀[A,B:p-open(p)].  (p-union(A;B) ∈ p-open(p))


Proof




Definitions occuring in Statement :  p-union: p-union(A;B) p-open: p-open(p) finite-prob-space: FinProbSpace uall: [x:A]. B[x] member: t ∈ T
Lemmas :  set_wf nat_wf int_seg_wf p-outcome_wf all_wf le_wf int_seg_subtype-nat false_wf subtype_rel_dep_function subtype_rel_self finite-prob-space_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot
\mforall{}[p:FinProbSpace].  \mforall{}[A,B:p-open(p)].    (p-union(A;B)  \mmember{}  p-open(p))



Date html generated: 2015_07_17-AM-08_00_24
Last ObjectModification: 2015_01_27-AM-11_22_54

Home Index