Nuprl Lemma : p-union_wf
∀[p:FinProbSpace]. ∀[A,B:p-open(p)].  (p-union(A;B) ∈ p-open(p))
Proof
Definitions occuring in Statement : 
p-union: p-union(A;B)
, 
p-open: p-open(p)
, 
finite-prob-space: FinProbSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas : 
set_wf, 
nat_wf, 
int_seg_wf, 
p-outcome_wf, 
all_wf, 
le_wf, 
int_seg_subtype-nat, 
false_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
finite-prob-space_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
lelt_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
\mforall{}[p:FinProbSpace].  \mforall{}[A,B:p-open(p)].    (p-union(A;B)  \mmember{}  p-open(p))
Date html generated:
2015_07_17-AM-08_00_24
Last ObjectModification:
2015_01_27-AM-11_22_54
Home
Index