Nuprl Lemma : csm-cubical-equiv-by-cases

G:j⊢. ∀A,B:{G ⊢ _}. ∀f:{G ⊢ _:Equiv(A;B)}. ∀H:j⊢. ∀s:H j⟶ G.
  ((cubical-equiv-by-cases(G;B;f))s+
  cubical-equiv-by-cases(H;(B)s;(f)s)
  ∈ {H.𝕀((q=0) ∨ (q=1)) ⊢ _:Equiv((if (q=0) then ((A)s)p else ((B)s)p);((B)s)p)})


Proof




Definitions occuring in Statement :  cubical-equiv-by-cases: cubical-equiv-by-cases(G;B;f) cubical-equiv: Equiv(T;A) case-type: (if phi then else B) context-subset: Gamma, phi face-zero: (i=0) face-one: (i=1) face-or: (a ∨ b) interval-type: 𝕀 csm+: tau+ cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a cubical-equiv-by-cases: cubical-equiv-by-cases(G;B;f) squash: T prop: cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) guard: {T} true: True csm+: tau+ csm-comp: F csm-ap-term: (t)s csm-adjoin: (s;u) csm-ap: (s)x pi2: snd(t) cubical-type: {X ⊢ _} pi1: fst(t) compose: g same-cubical-type: Gamma ⊢ B implies:  Q constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} cubical-equiv: Equiv(T;A) cubical-sigma: Σ B
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval subset-cubical-type context-subset_wf context-subset-is-subset istype-cubical-term face-type_wf csm-case-term cube_set_map_wf cubical-equiv_wf cubical-type_wf cubical_set_wf case-term_wf2 squash_wf true_wf face-or_wf face-term-implies-subset face-term-implies-or1 subset-cubical-term sub_cubical_set_functionality2 context-subset-subtype-or2 constrained-cubical-term-eqcd csm-face-zero q-csm+ face-zero_wf cc-snd_wf face-one_wf case-type_wf same-cubical-type-zero-and-one face-0_wf csm-cubical-id-equiv csm-ap-term_wf csm+_wf_interval csm-face-type context-subset-map csm-face-one case-type-same2 subset-cubical-term2 sub_cubical_set_self thin-context-subset face-term-implies-or2 cubical-equiv-subset csm-cubical-equiv cubical-term-eqcd case-type-same1 face-1_wf empty-context-subset-lemma3' empty-context-subset-lemma5
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis applyEquality because_Cache independent_isectElimination sqequalRule Error :memTop,  universeIsType inhabitedIsType equalitySymmetry lambdaEquality_alt imageElimination equalityTransitivity dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed setElimination rename productElimination equalityElimination equalityIstype independent_functionElimination cumulativity universeEquality hyp_replacement dependent_set_memberEquality_alt independent_pairEquality

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A,B:\{G  \mvdash{}  \_\}.  \mforall{}f:\{G  \mvdash{}  \_:Equiv(A;B)\}.  \mforall{}H:j\mvdash{}.  \mforall{}s:H  j{}\mrightarrow{}  G.
    ((cubical-equiv-by-cases(G;B;f))s+  =  cubical-equiv-by-cases(H;(B)s;(f)s))



Date html generated: 2020_05_20-PM-07_26_02
Last ObjectModification: 2020_04_28-PM-04_24_35

Theory : cubical!type!theory


Home Index