Nuprl Lemma : cube-+

[I:fset(ℕ)]. ∀[i:ℕ].  (cube+(I;i) cube-(I;i) 1(formal-cube(I+i)) ∈ formal-cube(I+i) j⟶ formal-cube(I+i))


Proof




Definitions occuring in Statement :  cube-: cube-(I;i) cube+: cube+(I;i) interval-type: 𝕀 cube-context-adjoin: X.A csm-id: 1(X) csm-comp: F cube_set_map: A ⟶ B formal-cube: formal-cube(I) add-name: I+i fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B formal-cube: formal-cube(I) all: x:A. B[x] csm-id: 1(X) cube+: cube+(I;i) cube-: cube-(I;i) csm-comp: F compose: g names-hom: I ⟶ J names: names(I) nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_stable: SqStable(P) squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: label: ...$L... t true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  istype-nat fset_wf nat_wf formal-cube_wf1 add-name_wf csm-comp_wf cube-context-adjoin_wf interval-type_wf cube-_wf cube+_wf csm-id_wf cube-set-map-subtype I_cube_pair_redex_lemma eq_int_wf eqtt_to_assert assert_of_eq_int sq_stable__fset-member int-deq_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le fset-member_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma iff_weakening_equal trivial-member-add-name1 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int names_wf I_cube_wf csm-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid hypothesis universeIsType sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache sqequalRule functionExtensionality dependent_functionElimination Error :memTop,  setElimination rename inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_set_memberEquality_alt independent_functionElimination imageMemberEquality baseClosed imageElimination natural_numberEquality approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation voidElimination equalityIstype promote_hyp cumulativity

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube+(I;i)  o  cube-(I;i)  =  1(formal-cube(I+i)))



Date html generated: 2020_05_20-PM-02_39_03
Last ObjectModification: 2020_04_04-PM-04_37_33

Theory : cubical!type!theory


Home Index