Nuprl Lemma : cube-_wf

[I:fset(ℕ)]. ∀[i:ℕ].  (cube-(I;i) ∈ formal-cube(I+i) j⟶ formal-cube(I).𝕀)


Proof




Definitions occuring in Statement :  cube-: cube-(I;i) interval-type: 𝕀 cube-context-adjoin: X.A cube_set_map: A ⟶ B formal-cube: formal-cube(I) add-name: I+i fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nat-trans: nat-trans(C;D;F;G) psc_map: A ⟶ B cube_set_map: A ⟶ B member: t ∈ T uall: [x:A]. B[x] prop: nat: names: names(I) istype: istype(T) uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B names-hom: I ⟶ J interval-presheaf: 𝕀 cube-: cube-(I;i) all: x:A. B[x] cube-context-adjoin: X.A pi1: fst(t) pi2: snd(t) spreadn: spread4 cube-cat: CubeCat cat-ob: cat-ob(C) op-cat: op-cat(C) cat-arrow: cat-arrow(C) type-cat: TypeCat functor-ob: ob(F) formal-cube: formal-cube(I) functor-arrow: arrow(F) compose: g guard: {T} and: P ∧ Q DeMorgan-algebra: DeMorganAlgebra fset: fset(T) cube-set-restriction: f(s) I_cube: A(I)
Lemmas referenced :  nat_wf fset_wf istype-nat names-hom_wf strong-subtype-self istype-int le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf fset-member_wf trivial-member-add-name1 f-subset-add-name names-subtype dM_wf lattice-point_wf add-name_wf names_wf subtype_rel_dep_function interval-type-at I_cube_pair_redex_lemma cube_set_restriction_pair_lemma arrow_pair_lemma cat_comp_tuple_lemma nh-comp_wf f-subset_weakening names-hom-subtype interval-type-ap-morph nh-comp-sq dM-lift_wf2 DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf equal_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set subtype_rel_self cube-set-restriction_wf interval-type_wf cube-context-adjoin_wf formal-cube_wf1 I_cube_wf cat-arrow_wf cube-cat_wf op-cat_wf cat-ob_wf cat_arrow_triple_lemma
Rules used in proof :  thin isectElimination sqequalHypSubstitution universeIsType hypothesis extract_by_obid introduction cut dependent_set_memberEquality_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution natural_numberEquality intEquality lambdaFormation_alt independent_isectElimination because_Cache lambdaEquality_alt applyEquality hypothesisEquality dependent_pairEquality_alt functionExtensionality Error :memTop,  dependent_functionElimination sqequalRule inhabitedIsType isectEquality cumulativity productEquality instantiate equalityIstype functionIsType

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube-(I;i)  \mmember{}  formal-cube(I+i)  j{}\mrightarrow{}  formal-cube(I).\mBbbI{})



Date html generated: 2020_05_20-PM-02_38_43
Last ObjectModification: 2020_04_04-PM-01_34_57

Theory : cubical!type!theory


Home Index