Nuprl Lemma : cube-_wf
∀[I:fset(ℕ)]. ∀[i:ℕ].  (cube-(I;i) ∈ formal-cube(I+i) j⟶ formal-cube(I).𝕀)
Proof
Definitions occuring in Statement : 
cube-: cube-(I;i)
, 
interval-type: 𝕀
, 
cube-context-adjoin: X.A
, 
cube_set_map: A ⟶ B
, 
formal-cube: formal-cube(I)
, 
add-name: I+i
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
nat-trans: nat-trans(C;D;F;G)
, 
psc_map: A ⟶ B
, 
cube_set_map: A ⟶ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
names: names(I)
, 
istype: istype(T)
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
names-hom: I ⟶ J
, 
interval-presheaf: 𝕀
, 
cube-: cube-(I;i)
, 
all: ∀x:A. B[x]
, 
cube-context-adjoin: X.A
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
cat-ob: cat-ob(C)
, 
op-cat: op-cat(C)
, 
cat-arrow: cat-arrow(C)
, 
type-cat: TypeCat
, 
functor-ob: ob(F)
, 
formal-cube: formal-cube(I)
, 
functor-arrow: arrow(F)
, 
compose: f o g
, 
guard: {T}
, 
and: P ∧ Q
, 
DeMorgan-algebra: DeMorganAlgebra
, 
fset: fset(T)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
Lemmas referenced : 
nat_wf, 
fset_wf, 
istype-nat, 
names-hom_wf, 
strong-subtype-self, 
istype-int, 
le_wf, 
strong-subtype-set3, 
strong-subtype-deq-subtype, 
int-deq_wf, 
fset-member_wf, 
trivial-member-add-name1, 
f-subset-add-name, 
names-subtype, 
dM_wf, 
lattice-point_wf, 
add-name_wf, 
names_wf, 
subtype_rel_dep_function, 
interval-type-at, 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
arrow_pair_lemma, 
cat_comp_tuple_lemma, 
nh-comp_wf, 
f-subset_weakening, 
names-hom-subtype, 
interval-type-ap-morph, 
nh-comp-sq, 
dM-lift_wf2, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
subtype_rel_self, 
cube-set-restriction_wf, 
interval-type_wf, 
cube-context-adjoin_wf, 
formal-cube_wf1, 
I_cube_wf, 
cat-arrow_wf, 
cube-cat_wf, 
op-cat_wf, 
cat-ob_wf, 
cat_arrow_triple_lemma
Rules used in proof : 
thin, 
isectElimination, 
sqequalHypSubstitution, 
universeIsType, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
natural_numberEquality, 
intEquality, 
lambdaFormation_alt, 
independent_isectElimination, 
because_Cache, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
dependent_pairEquality_alt, 
functionExtensionality, 
Error :memTop, 
dependent_functionElimination, 
sqequalRule, 
inhabitedIsType, 
isectEquality, 
cumulativity, 
productEquality, 
instantiate, 
equalityIstype, 
functionIsType
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube-(I;i)  \mmember{}  formal-cube(I+i)  j{}\mrightarrow{}  formal-cube(I).\mBbbI{})
Date html generated:
2020_05_20-PM-02_38_43
Last ObjectModification:
2020_04_04-PM-01_34_57
Theory : cubical!type!theory
Home
Index