Nuprl Lemma : cubical-isect-family-comp
∀X,Delta:⊢. ∀s:Delta ⟶ X. ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀a:Delta(I). ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}.
∀w:cubical-isect-family(X;A;B;I;(s)a).
  (λK,g. (w K f ⋅ g) ∈ cubical-isect-family(X;A;B;J;(s)f(a)))
Proof
Definitions occuring in Statement : 
cubical-isect-family: cubical-isect-family(X;A;B;I;a)
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
csm-ap: (s)x
, 
cube_set_map: A ⟶ B
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical-isect-family: cubical-isect-family(X;A;B;I;a)
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
squash: ↓T
, 
cand: A c∧ B
, 
top: Top
Lemmas referenced : 
cubical-isect-family_wf, 
csm-ap_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
I_cube_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
cube_set_map_wf, 
cubical_set_wf, 
cc-adjoin-cube_wf, 
cube-set-restriction-comp, 
iff_weakening_equal, 
subtype_rel_self, 
cube-set-restriction_wf, 
nh-comp_wf, 
csm-ap-restriction, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
cubical-type-at_wf, 
istype-cubical-type-at, 
subtype_rel-equal, 
cubical-type-ap-morph_wf, 
nh-comp-assoc, 
istype-void, 
cc-adjoin-cube-restriction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
sqequalRule, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
inhabitedIsType, 
lambdaEquality_alt, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
dependent_functionElimination, 
universeEquality, 
instantiate, 
because_Cache, 
imageElimination, 
isectEquality, 
isect_memberEquality_alt, 
equalityIsType1, 
applyLambdaEquality, 
productIsType, 
independent_pairFormation, 
voidElimination, 
functionIsType, 
equalityIstype
Latex:
\mforall{}X,Delta:\mvdash{}.  \mforall{}s:Delta  {}\mrightarrow{}  X.  \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}a:Delta(I).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.
\mforall{}w:cubical-isect-family(X;A;B;I;(s)a).
    (\mlambda{}K,g.  (w  K  f  \mcdot{}  g)  \mmember{}  cubical-isect-family(X;A;B;J;(s)f(a)))
Date html generated:
2019_11_05-PM-00_22_48
Last ObjectModification:
2018_12_12-PM-06_35_03
Theory : cubical!type!theory
Home
Index