Nuprl Lemma : cubical-isect-family-comp

X,Delta:⊢. ∀s:Delta ⟶ X. ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀a:Delta(I). ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}.
w:cubical-isect-family(X;A;B;I;(s)a).
  K,g. (w f ⋅ g) ∈ cubical-isect-family(X;A;B;J;(s)f(a)))


Proof




Definitions occuring in Statement :  cubical-isect-family: cubical-isect-family(X;A;B;I;a) cube-context-adjoin: X.A cubical-type: {X ⊢ _} csm-ap: (s)x cube_set_map: A ⟶ B cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] member: t ∈ T apply: a lambda: λx.A[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical-isect-family: cubical-isect-family(X;A;B;I;a) uall: [x:A]. B[x] subtype_rel: A ⊆B true: True implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a prop: squash: T cand: c∧ B top: Top
Lemmas referenced :  cubical-isect-family_wf csm-ap_wf cubical-type_wf cube-context-adjoin_wf I_cube_wf names-hom_wf fset_wf nat_wf cube_set_map_wf cubical_set_wf cc-adjoin-cube_wf cube-set-restriction-comp iff_weakening_equal subtype_rel_self cube-set-restriction_wf nh-comp_wf csm-ap-restriction istype-universe true_wf squash_wf equal_wf cubical-type-at_wf istype-cubical-type-at subtype_rel-equal cubical-type-ap-morph_wf nh-comp-assoc istype-void cc-adjoin-cube-restriction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt sqequalRule hypothesis universeIsType introduction extract_by_obid isectElimination hypothesisEquality inhabitedIsType lambdaEquality_alt hyp_replacement equalitySymmetry equalityTransitivity applyEquality natural_numberEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality dependent_functionElimination universeEquality instantiate because_Cache imageElimination isectEquality isect_memberEquality_alt equalityIsType1 applyLambdaEquality productIsType independent_pairFormation voidElimination functionIsType equalityIstype

Latex:
\mforall{}X,Delta:\mvdash{}.  \mforall{}s:Delta  {}\mrightarrow{}  X.  \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}a:Delta(I).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.
\mforall{}w:cubical-isect-family(X;A;B;I;(s)a).
    (\mlambda{}K,g.  (w  K  f  \mcdot{}  g)  \mmember{}  cubical-isect-family(X;A;B;J;(s)f(a)))



Date html generated: 2019_11_05-PM-00_22_48
Last ObjectModification: 2018_12_12-PM-06_35_03

Theory : cubical!type!theory


Home Index