Nuprl Lemma : face-lattice-tube_wf

[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[j:ℕ].  (face-lattice-tube(I;phi;j) ∈ Point(face_lattice(I+j)))


Proof




Definitions occuring in Statement :  face-lattice-tube: face-lattice-tube(I;phi;j) face_lattice: face_lattice(I) add-name: I+i lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-lattice-tube: face-lattice-tube(I;phi;j) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a all: x:A. B[x] lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: functor-ob(F) pi1: fst(t) face-presheaf: 𝔽 names: names(I) nat:
Lemmas referenced :  fl1_wf strong-subtype-self le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf nat_wf fset-member_wf trivial-member-add-name1 fl0_wf face-lattice-constraints_wf fset-contains-none_wf fset-all_wf names-deq_wf union-deq_wf fset-antichain_wf assert_wf names_wf fset_wf subtype_rel_self f-subset-add-name nc-s_wf face-presheaf_wf cube-set-restriction_wf lattice-meet_wf equal_wf lattice-point_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set add-name_wf face_lattice_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis applyEquality instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination dependent_functionElimination setEquality unionEquality dependent_set_memberEquality intEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[j:\mBbbN{}].
    (face-lattice-tube(I;phi;j)  \mmember{}  Point(face\_lattice(I+j)))



Date html generated: 2016_05_18-PM-00_19_42
Last ObjectModification: 2016_02_18-PM-05_11_23

Theory : cubical!type!theory


Home Index