Nuprl Lemma : face-term-distrib4

[Gamma:j⊢]. ∀[a,b,c:{Gamma ⊢ _:𝔽}].  Gamma ⊢ (((b ∧ c) ∨ a) ⇐⇒ ((b ∨ a) ∧ (c ∨ a)))


Proof




Definitions occuring in Statement :  face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) face-or: (a ∨ b) face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) and: P ∧ Q face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q face-and: (a ∧ b) face-or: (a ∨ b) cubical-term-at: u(a) subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt iff: ⇐⇒ Q or: P ∨ Q prop: bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q
Lemmas referenced :  cubical-term_wf face-type_wf cubical_set_wf face_lattice-1-join-irreducible lattice-meet_wf face_lattice_wf cubical-term-at_wf subtype_rel_self iff_weakening_uiff equal_wf lattice-point_wf lattice-1_wf lattice-meet-eq-1 bdd-distributive-lattice-subtype-bdd-lattice subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-join_wf face-or_wf face-and_wf I_cube_wf fset_wf nat_wf iff_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality_alt dependent_functionElimination hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectElimination isectIsTypeImplies universeIsType instantiate extract_by_obid lambdaFormation_alt applyEquality because_Cache independent_functionElimination unionElimination inlFormation_alt productEquality equalityIstype equalityTransitivity equalitySymmetry inrFormation_alt productIsType cumulativity isectEquality independent_isectElimination setElimination rename unionEquality unionIsType independent_pairFormation promote_hyp

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[a,b,c:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    Gamma  \mvdash{}  (((b  \mwedge{}  c)  \mvee{}  a)  \mLeftarrow{}{}\mRightarrow{}  ((b  \mvee{}  a)  \mwedge{}  (c  \mvee{}  a)))



Date html generated: 2020_05_20-PM-02_49_31
Last ObjectModification: 2020_04_04-PM-05_03_46

Theory : cubical!type!theory


Home Index