Nuprl Lemma : nc-s-comp-e
∀I:fset(ℕ). ∀i,j:ℕ. ((¬i ∈ I)
⇒ (s ⋅ e(i;j) = s ∈ I+j ⟶ I))
Proof
Definitions occuring in Statement :
nc-e: e(i;j)
,
nc-s: s
,
add-name: I+i
,
nh-comp: g ⋅ f
,
names-hom: I ⟶ J
,
fset-member: a ∈ s
,
fset: fset(T)
,
nat-deq: NatDeq
,
nat: ℕ
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
names-hom: I ⟶ J
,
nh-comp: g ⋅ f
,
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
,
compose: f o g
,
dM: dM(I)
,
dM-lift: dM-lift(I;J;f)
,
nc-s: s
,
member: t ∈ T
,
squash: ↓T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
DeMorgan-algebra: DeMorganAlgebra
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
guard: {T}
,
uimplies: b supposing a
,
so_apply: x[s]
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
nc-e: e(i;j)
,
names: names(I)
,
nat: ℕ
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
nat-deq: NatDeq
,
int-deq: IntDeq
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
lattice-point_wf,
dM_wf,
add-name_wf,
subtype_rel_set,
DeMorgan-algebra-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
DeMorgan-algebra-structure-subtype,
subtype_rel_transitivity,
bounded-lattice-structure_wf,
bounded-lattice-axioms_wf,
uall_wf,
lattice-meet_wf,
lattice-join_wf,
DeMorgan-algebra-axioms_wf,
dM-lift-inc,
nc-e_wf,
names-subtype,
f-subset-add-name,
dM_inc_wf,
iff_weakening_equal,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
names_wf,
not_wf,
fset-member_wf,
nat_wf,
nat-deq_wf,
fset_wf,
int_subtype_base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
functionExtensionality,
sqequalRule,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
introduction,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeEquality,
instantiate,
productEquality,
independent_isectElimination,
cumulativity,
because_Cache,
dependent_functionElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
productElimination,
independent_functionElimination,
setElimination,
rename,
unionElimination,
equalityElimination,
dependent_pairFormation,
promote_hyp,
voidElimination,
intEquality
Latex:
\mforall{}I:fset(\mBbbN{}). \mforall{}i,j:\mBbbN{}. ((\mneg{}i \mmember{} I) {}\mRightarrow{} (s \mcdot{} e(i;j) = s))
Date html generated:
2017_10_05-AM-01_04_54
Last ObjectModification:
2017_07_28-AM-09_27_14
Theory : cubical!type!theory
Home
Index