Nuprl Lemma : in-hull-next2

g:OrientedPlane. ∀xs:{xs:Point List| geo-general-position(g;xs)} . ∀i,j:ℕ||xs||.
  ((¬(i j ∈ ℤ))  (ij ∈ Hull(xs) ∧ 2 < ||xs||)  (∃k:ℕ||xs||. (((¬(k i ∈ ℤ)) ∧ (k j ∈ ℤ))) ∧ ki ∈ Hull(xs))))


Proof




Definitions occuring in Statement :  in-hull: ij ∈ Hull(xs) geo-general-position: geo-general-position(g;xs) oriented-plane: OrientedPlane geo-point: Point length: ||as|| list: List int_seg: {i..j-} less_than: a < b all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A prop: uimplies: supposing a guard: {T} cand: c∧ B lelt: i ≤ j < k subtype_rel: A ⊆B uall: [x:A]. B[x] int_seg: {i..j-} exists: x:A. B[x] member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x] in-hull: ij ∈ Hull(xs) or: P ∨ Q decidable: Dec(P) sq_type: SQType(T) rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q)
Lemmas referenced :  list_wf set_wf int_seg_wf less_than_wf geo-general-position_wf in-hull_wf not_wf equal_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat int_seg_properties geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf oriented-plane_wf subtype_rel_transitivity oriented-plane-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf length_wf lelt_wf in-hull-leftmost decidable__equal_int int_subtype_base subtype_base_sq left-test-symmetry left-test_wf assert_functionality_wrt_uiff
Rules used in proof :  productEquality voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality approximateComputation independent_pairFormation because_Cache sqequalRule independent_isectElimination instantiate applyEquality natural_numberEquality isectElimination dependent_set_memberEquality rename setElimination dependent_pairFormation hypothesis independent_functionElimination hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution unionElimination equalitySymmetry equalityTransitivity cumulativity

Latex:
\mforall{}g:OrientedPlane.  \mforall{}xs:\{xs:Point  List|  geo-general-position(g;xs)\}  .  \mforall{}i,j:\mBbbN{}||xs||.
    ((\mneg{}(i  =  j))
    {}\mRightarrow{}  (ij  \mmember{}  Hull(xs)  \mwedge{}  2  <  ||xs||)
    {}\mRightarrow{}  (\mexists{}k:\mBbbN{}||xs||.  (((\mneg{}(k  =  i))  \mwedge{}  (\mneg{}(k  =  j)))  \mwedge{}  ki  \mmember{}  Hull(xs))))



Date html generated: 2018_05_22-PM-00_07_27
Last ObjectModification: 2017_12_12-PM-04_23_39

Theory : euclidean!plane!geometry


Home Index