Nuprl Lemma : ip-circle-circle
∀rv:InnerProductSpace. ∀a,b:Point. ∀c:{c:Point| a # c} . ∀d:Point.
  ∀[p:{p:Point| ab=ap ∧ cd ≥ cp} ]. ∀[q:{q:Point| cd=cq ∧ ab ≥ aq} ].
    ∃u:{u:Point| ab=au ∧ cd=cu} . (∃v:{Point| ((ab=av ∧ cd=cv) ∧ ((ab > aq ∧ cd > cp) 
⇒ u # v))})
Proof
Definitions occuring in Statement : 
ip-gt: cd > ab
, 
ip-ge: cd ≥ ab
, 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
guard: {T}
, 
sq_exists: ∃x:{A| B[x]}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
ip-circle-circle-lemma3, 
ip-ge-iff, 
ip-congruent_wf, 
rleq_wf, 
rv-norm_wf, 
rv-sub_wf, 
real_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
sq_exists_wf, 
ip-gt_wf, 
ss-sep_wf, 
set_wf, 
ip-ge_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
sq_stable__ip-congruent, 
ip-gt-iff
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation, 
isectElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
productEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
natural_numberEquality, 
dependent_pairFormation, 
functionEquality, 
instantiate, 
dependent_set_memberFormation, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  a  \#  c\}  .  \mforall{}d:Point.
    \mforall{}[p:\{p:Point|  ab=ap  \mwedge{}  cd  \mgeq{}  cp\}  ].  \mforall{}[q:\{q:Point|  cd=cq  \mwedge{}  ab  \mgeq{}  aq\}  ].
        \mexists{}u:\{u:Point|  ab=au  \mwedge{}  cd=cu\}  .  (\mexists{}v:\{Point|  ((ab=av  \mwedge{}  cd=cv)  \mwedge{}  ((ab  >  aq  \mwedge{}  cd  >  cp)  {}\mRightarrow{}  u  \#  v))\})
Date html generated:
2017_10_05-AM-00_12_26
Last ObjectModification:
2017_03_21-AM-00_38_21
Theory : inner!product!spaces
Home
Index