Nuprl Lemma : ip-circle-circle

rv:InnerProductSpace. ∀a,b:Point. ∀c:{c:Point| c} . ∀d:Point.
  ∀[p:{p:Point| ab=ap ∧ cd ≥ cp} ]. ∀[q:{q:Point| cd=cq ∧ ab ≥ aq} ].
    ∃u:{u:Point| ab=au ∧ cd=cu} (∃v:{Point| ((ab=av ∧ cd=cv) ∧ ((ab > aq ∧ cd > cp)  v))})


Proof




Definitions occuring in Statement :  ip-gt: cd > ab ip-ge: cd ≥ ab ip-congruent: ab=cd inner-product-space: InnerProductSpace ss-sep: y ss-point: Point uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B uiff: uiff(P;Q) uimplies: supposing a prop: subtype_rel: A ⊆B exists: x:A. B[x] so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] guard: {T} sq_exists: x:{A| B[x]} sq_stable: SqStable(P) squash: T
Lemmas referenced :  ip-circle-circle-lemma3 ip-ge-iff ip-congruent_wf rleq_wf rv-norm_wf rv-sub_wf real_wf int-to-real_wf req_wf rmul_wf rv-ip_wf sq_exists_wf ip-gt_wf ss-sep_wf set_wf ip-ge_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf sq_stable__ip-congruent ip-gt-iff
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation isectElimination setElimination rename dependent_set_memberEquality productElimination independent_pairFormation because_Cache independent_isectElimination productEquality applyEquality sqequalRule lambdaEquality setEquality natural_numberEquality dependent_pairFormation functionEquality instantiate dependent_set_memberFormation independent_functionElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  a  \#  c\}  .  \mforall{}d:Point.
    \mforall{}[p:\{p:Point|  ab=ap  \mwedge{}  cd  \mgeq{}  cp\}  ].  \mforall{}[q:\{q:Point|  cd=cq  \mwedge{}  ab  \mgeq{}  aq\}  ].
        \mexists{}u:\{u:Point|  ab=au  \mwedge{}  cd=cu\}  .  (\mexists{}v:\{Point|  ((ab=av  \mwedge{}  cd=cv)  \mwedge{}  ((ab  >  aq  \mwedge{}  cd  >  cp)  {}\mRightarrow{}  u  \#  v))\})



Date html generated: 2017_10_05-AM-00_12_26
Last ObjectModification: 2017_03_21-AM-00_38_21

Theory : inner!product!spaces


Home Index