Nuprl Lemma : ip-ge-sep

rv:InnerProductSpace. ∀a,c:Point.  ∀[b:Point]. (a c) supposing (a and ac ≥ ab)


Proof




Definitions occuring in Statement :  ip-ge: cd ≥ ab inner-product-space: InnerProductSpace ss-sep: y ss-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ip-ge: cd ≥ ab not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] exists: x:A. B[x] sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  not_wf exists_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ip-between_wf ip-congruent_wf sq_stable__rv-sep-ext ss-sep_wf ip-ge_wf ip-ge-iff rv-norm-positive rv-sub_wf rv-sep-iff rv-norm-positive-iff rless_transitivity1 int-to-real_wf rv-norm_wf real_wf rleq_wf req_wf rmul_wf rv-ip_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination applyEquality hypothesis instantiate independent_isectElimination productEquality because_Cache rename independent_functionElimination imageMemberEquality baseClosed imageElimination productElimination natural_numberEquality setElimination setEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,c:Point.    \mforall{}[b:Point].  (a  \#  c)  supposing  (a  \#  b  and  ac  \mgeq{}  ab)



Date html generated: 2017_10_05-AM-00_12_21
Last ObjectModification: 2017_03_20-PM-02_26_30

Theory : inner!product!spaces


Home Index