Nuprl Lemma : ip-ge-sep
∀rv:InnerProductSpace. ∀a,c:Point.  ∀[b:Point]. (a # c) supposing (a # b and ac ≥ ab)
Proof
Definitions occuring in Statement : 
ip-ge: cd ≥ ab
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
ip-ge: cd ≥ ab
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not_wf, 
exists_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ip-between_wf, 
ip-congruent_wf, 
sq_stable__rv-sep-ext, 
ss-sep_wf, 
ip-ge_wf, 
ip-ge-iff, 
rv-norm-positive, 
rv-sub_wf, 
rv-sep-iff, 
rv-norm-positive-iff, 
rless_transitivity1, 
int-to-real_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
productEquality, 
because_Cache, 
rename, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
natural_numberEquality, 
setElimination, 
setEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,c:Point.    \mforall{}[b:Point].  (a  \#  c)  supposing  (a  \#  b  and  ac  \mgeq{}  ab)
Date html generated:
2017_10_05-AM-00_12_21
Last ObjectModification:
2017_03_20-PM-02_26_30
Theory : inner!product!spaces
Home
Index