Nuprl Lemma : permutation-s-group_wf

[rv:SeparationSpace]. ∀[sepw:∀x:Point. ∀y:{y:Point| y} .  y].  (Perm(rv) ∈ s-Group)


Proof




Definitions occuring in Statement :  permutation-s-group: Perm(rv) s-group: s-Group ss-sep: y ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  exists: x:A. B[x] or: P ∨ Q fun-sep: fun-sep(ss;A;f;g) pi1: fst(t) pi2: snd(t) uimplies: supposing a uiff: uiff(P;Q) permutation-s-group: Perm(rv) false: False not: ¬A ss-eq: x ≡ y guard: {T} compose: g so_apply: x[s] so_lambda: λ2x.t[x] prop: implies:  Q all: x:A. B[x] cand: c∧ B and: P ∧ Q top: Top member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  permutation-ss-sep exists_wf or_wf permutation-ss-eq-iff mk-s-group_wf ss-eq_transitivity compose_wf separation-space_wf permutation-ss_wf ss-eq_wf all_wf ss-sep_wf ss-eq_weakening ss-point_wf permutation-ss-point
Rules used in proof :  inrEquality dependent_pairEquality inlEquality unionElimination independent_isectElimination setEquality axiomEquality equalitySymmetry equalityTransitivity rename setElimination functionEquality functionExtensionality applyEquality productEquality productElimination independent_pairFormation independent_functionElimination because_Cache dependent_functionElimination lambdaFormation hypothesisEquality lambdaEquality independent_pairEquality dependent_set_memberEquality hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:SeparationSpace].  \mforall{}[sepw:\mforall{}x:Point.  \mforall{}y:\{y:Point|  x  \#  y\}  .    x  \#  y].    (Perm(rv)  \mmember{}  s-Group)



Date html generated: 2016_11_08-AM-09_13_00
Last ObjectModification: 2016_11_03-AM-11_22_25

Theory : inner!product!spaces


Home Index